Open Access Open Access  Restricted Access Subscription or Fee Access

Arsenic Removal by Using Low Cost Non-conventional (NLP, PLP, ALP) Adsorbents

Nidhi Jain

Abstract



Abstract

In present study, Azadirachta indica (neem leaves), Ficus religiosa (peepal leaves), Emblica officinalis (amla leaves) used as adsorbent. Batch experiments were conducted to study the adsorption behaviour. The material was characterized by FTIR, XRD, TGA-DTA, and SEM-EDS. The extent of arsenic removal capacity was tested by the material by varying the solution parameters like adsorbent dose, adsorbate concentration and pH of the solution, contact time and temperature. The amount of arsenic adsorption increases with the increase of adsorbent concentration which indicates that adsorption depends upon the availability of active sites for arsenic. The experimental data were correlated reasonably well by Freundlich adsorption isotherm. The optimum conditions for the removal of arsenic from water are initial concentration: 0.1 mg/L, adsorbent dose: 1 g/50 mL, pH: 6.0, temperature 50ºC±2ºC, contact time: 30 min. and shaking time: 1 h is worked out. Increasing order of arsenic adsorption on leaf powders was as follows: NLP > ALP > PLP. It can therefore, be potentially applied for the treatment of water contaminated by arsenate.

 

Keywords: Adsorption; low cost adsorbent; Arsenic concentration; Water treatment

Cite this Article

Shikha Saxena, Nisha Singh, Nidhi Jain, Arsenic Removal by Using Low Cost Nonconventional (NLP, PLP, ALP) Adsorbents Journal of Modern Chemistry & Chemical Technology. 2018; 9(3): 29–39p.



Keywords


Adsorption; low cost adsorbent; Arsenic concentration; Water treatment

Full Text:

PDF

References


Amin, M. N., Kitagawa, K. T. Begum, A., Katsumata H., Suzuki, T., Ohta, K.; Removal of arsenic in aqueous solutions by adsorption onto waste rice husk.; Ind. Eng. Chem. Res.; (2006) Vol. 45, pp 8105- 8110.

APHA, Standard methods for the examination of water and waste water, 21st edition.; American Public Health Association, Washington D.C.; (2005).

Bang, S.; Pater, M.; Lippincott, Mera, X.; Removal of arsenic from ground water by granular titanium dioxide adsorbent.; Chemo sphere.; 2005, Vol. 60(3), pp 389-97.

Borowiak-Resterna, A., Cierpiszewski, R., Prochaska, K.; Kinetic and equilibrium studies of the removal of cadmium ions from acidic chloride solutions by hydrophobic pyridinecarboxamide extractants.; J. Hazard. Mater.; 2010, Vol. 179, pp 828-833.

Brunori, C., Cremisini, C., Massanisso, P., Pinto, V., Torricelli, L.; Re use of a treated red mud bauxite waste: studies as environmental compatibility. J. Hazard. Mater.; 2007, 139, pp 286-292.

Chaudhari, L. B., Murthy, Z. V. P.; Separation of Cd and Ni from multicomponent aqueous solutions by nanofilteration and characterization of membrane using IT model.; J. Hazard. Mater.; 2010, Vol. 180, pp 309-315.

Cheremishinoff, N. P., Moressi, A. C.; Carbon adsorption applications in cheremishinoff, N.P., Ellerbusch, F. (EDS), Carbon adsorption handbook.; Ann. Arbor Science.; 1978, pp 1-53.

Chuang, C. L., Fan, M., Xu, M., Brown, R. C., Sung, S., Saha, B., Huang, C.P.; Adsorption of arsenic (V) by activated carbon prepared from oat-hulls.; Chemosphere.; 2005, Vol. 61(4), pp 478-473.

Demarco, M. J., Sengupta, A. K., Greenleaf, J. E.; Arsenic removal using a polymeric / inorganic hybrid sorbent.; Water Res.; 2002, 37, pp 164-174.

Elangovan, R., Pilip L. and Chandraraj K.; Biosorption of Chromium species by Aquatic Weeds: Kinetics and Mechanism studies.; Journal of Hazardous Materials.; 2008, Vol. 152, pp 100-112.

Ertugay, N., Bahyan, Y. K.; Biosorption of Cr (VI) from aqueous solutions by biomass of Agaricus bisporus.; Journal of Hazardous Materials.; 2008, Vol. 154, pp 432- 439.

Garelick, H., Jones, H., Dybowska, A., Valsami-Jones, E.; Arsenic pollution sources. Rev. Environ. Contam. Toxicol.; 2008, Vol. 197, pp 17 60.

Gupta, S., Gupta, V.; Speciation and toxicity of arsenic: a human carcinogen. Res. J. Recent Sci.; 2013, Vol. 2, pp 45 - 53.

Hughes, M. F., Beck B. D., Chen Y., Lewis A.S., Thomas D. J.; Arsenic exposure and toxicology: a historical perspective.; Toxicol. Sci.; 2011, Vol. 123(2), pp 305 332.

Katsoyiannis, I. A., Zouboulis, A. I.; Removal of arsenic from contaminated water sources by sorption onto iron oxide coated polymeric materials.; Water Research.; 2002, 36, pp 5141-5155.

Kitchin, K. T.; Recent advances in arsenic carcinogenesis mode of action, animal model systems and methylated arsenic metabolite.; Toxical Appl Pharmacol; 2001, pp 249.

Maeur.; Surface topography of the Neem Leaf Powder was observed with Scanning Electron . Microscopy (SEM), 11_Chapter 3 – Shodhganga.; 1996.

Mahimairaja, S., Bolan, N. S., Adriano, D. C.,

Robinson B.; Arsenic contamination and its risk management in complex environmental settings.; Adv Agron.; 2005, Vol. 86, pp1-82.

Maji S. K., Pal A., Pal T.; Arsenic removal from aqueous solutions by adsorption on laterite soil.; J.Environ. Sci. Health.; A tox. Hazard. Subst. Environ. Eng.; 2007, Vol. 42(4), pp 453-62.

Mane, P. C., Bhosle, A. B., Deshmukh, P. D., Jangam, C. M.; Influence of surface characteristics of adsorbent and adsorbate on competitive adsorption equilibrium.; Advances in applied science research.; 2010, Vol. 1(3), pp 212- 221.

Mane, P. C., Bhosle, A. B., Jangam, C. M., Mukate, S. V.; Heavy metal removal from aqueous solution by opuntia.; A natural polyelctrolyte.; J. Nat. Prod. Plant. Resour.; 2011, Vol. 1(1), pp 75-80.

Mukherjee, A., Sengupta, M. K., Hossain, M. A., Ahamed, S., Das, B., Nayak, B., Lodh D., Rahman, M. M., Chakraborti, D.; Arsenic contamination in groundwater: a global perspective with emphasis on the Asian Scenario.; J. Health, Popul. Nutr.; 2006, Vol. 24(2), pp 142 163.

Ning, R. Y.; Arsenic removal by reverse osmosis.; Desalination.; 2002, 143(3), pp 237-241.

Öztürk, N., Bektas, T. E.; Nitrate removal from aqueous solution by adsorption onto various materials.; J. Hazard. Mater.; 2004, Vol. 12, pp 155–162.

Paltanayak, J., Mondal, K., Mathew, S., Lalvani, S.B.; A parametric evaluation of the removal of As (V) and As (III) by carbon based adsorbents.; Carbon.; 2000, Vol. 38, pp 589-596.

Reynolds, T. D., Richards, P. A.; Unit operations and processes in environmental engineering, 2nd ed.; PWS publishing Co.; 1996, pp 25, 350, 749.- 220 .

Vahter, M., Concha, G.; Role of metabolism in arsenic toxicity.; Pharmacol. Toxicol.; 2001, Vol. 89, pp 1-5.

Vasilyuk, S. L., Maltseva, T. V., Belyakov, V. N.; Influence of water hardness and removal of copper ion by ion exchange - assisted electrodialysis.; Desalination.; 2004, Vol. 162, pp 249-254.

Mohan D., Charles P., Arsenic removal from water/wastewater using adsorbents– a critical review, Journal of Hazardous Materials 142 (1–2) (2007) 1–53.




DOI: https://doi.org/10.37591/jomcct.v9i3.1502

Refbacks

  • There are currently no refbacks.