Open Access Open Access  Restricted Access Subscription or Fee Access

Intrinsic Viscosity of Stud Plant Mucilage (Dicerocaryum Zanguebarium): Polymeric Studies at Infinite Dilution.

Shadreck Muyambo, I. Chikurunhe, D. N. Moyo

Abstract


Abstract

Studies on stud plant mucilage (SpM) showed that it constitute of galactose, mannose and xylose and it has a molecular weight of 500kDa. However, the behaviour of the polymer using intrinsic viscosity, in dilute regime, has not been explored. The research investigated the intrinsic viscosity of SpM in water, salt and sugar solutions. Salt solutions has poor solvent properties and hence reduced the intrinsic viscosity of SpM as opposed to sugars which enhance it. The shape of SpM particles, in water, are either oblate or prolate. The Berry numbers shows that, all SpM solutions (in water, salt and sugar solvents) were in dilute domain and the molecules portray a conformation which is between rod-like and random coil.  

Keywords: Dicerocaryum zanguebarium, Intrinsic viscosity, Mucilage, Stud plant, Biopolymers

 


Keywords


Dicerocaryum zanguebarium; Intrinsic viscosity; Mucilage; Stud plant; Biopolymers

Full Text:

PDF

References


Rambwawasvika H, Parekh CT, Naidoo B, et al. Extraction and characterisation of the herb Dicerocaryum senecioides and its use in as potential hair permanent. IJAC. 2017; 13: 691-705p.

Benhura MAN, Marume M. Emulsifying properties of the mucilage extracted from Ruredzo (Dicerocaryum zanguebarium). Biosci. Biotech. & Biochem. 1993; 57(12): 1995-1998p. https://doi.org/10.1271/bbb.57.1995

Hyde, MA, Wursten BT, Ballings P, et al. Flora of Zimbabwe: Species information: Dicerocaryum senecioides [online] 2018, last modified 26/03/2018 (Accessed 22/06/2018).https//www.zimbabweflora.co.zw/speciesdata/species.php?species_id=152610

Luseba D, Elgorashe EE, Ntloedibe DT, et al. Antibacterial, anti-inflammatory and mutagenetic effects of some medicinal plants in South Africa for the treatment of wounds and retained placenta in livestock. S Afr. J Bot. 2007; 73: 378-383p. https://doi.org/10.1016/j.sajb.2007.03.003

Madiga MC, Cockeran R, Mokgotho MP, et al. Dichloromethane extract of Dicerocaryum senecioides leaves exhibits remarkable anti-inflammatory activity in human T-lymphocytes. Nat. Prod. Res. 2009; 23: 998-1006p. https://doi.org/10.1080/14786410802394140

Benhura MAN, Marume M. The mucilaginous polysaccharide material from ruredzo (Dicerocaryum zanguebarium). Food Chem. 1993; 46: 7-11p.

https://doi.org/10.1016/0308-8146(93)90067-P

Benhura MAN, Mavhudzi-Nyambayo I. Some properties of ruredzo (Dicerocaryum zanguebarium) mucilage cross-linked with epichlorohydrin. Carbohydr. Polym. 1997; 34: 67-71p. https://doi.org/10.1016/S0144-8617(97)00060-X

Benhura MAN, Marume M. Periodate oxidation of the mucilage from ruredzo (Dicerocaryum zanguebarium). Chem. Mikrobiol. Technol. Lebensm. 1994; 16: 65-68p.

Behrouzian F, Razavi SMA, Karazhiyan H. Intrinsic viscosity of cress (Lepidium sativum) seed gum: Effect of salts and sugars. Food Hydrocoll. 2014; 30: 100-1056p.

https://doi.org/10.1016/j.foodhyd.2013.04.019

Khouryieh HA, Herald TJ, Aramouni F, et al. Intrinsic viscosity and viscoelastic properties of xanthan/guar mixtures in dilute solutions. Effect of salt concentration on the polymer interactions. Food Res. Int. 2007; 40: 883-893p.

https://doi.org/10.1016/j.foodres.2007.03.001

Razavi SMA, Mohammadi Moghaddam T, Emadzadeh B, et al. Dilute solution properties of wild sage (Salvia macrosiphon) seed gum. Food Hydrocoll. 2012; 29: 205-210p. https://doi.org/10.1016/j.foodhyd.2012.02.020

Flory PJ. Principles of polymer chemistry. New York: Cornell University Press. 1953.

Behrouzian F, Razavi SMA, Phillips GO. Cress seed (Lepidium sativum) mucilage, an overview. Bioactive Carbohydrates and Dietary Fibre. 2014; 3: 17-28p.

https://doi.org/10.1016/j.bcdf.2014.01.001

Cui SW. Food Carbohydrates: Chemistry, physical properties and applications. USA: Taylor and Francis. 2005. https://doi.org/10.1201/9780203485286

Burkus Z, Temelli F. Determination of the molecular weight of barely β-glucan using intrinsic viscosity measurements. Carbohydr. Polym. 2003; 54: 51-57p.

https://doi.org/10.1016/S0144-8617(03)00139-5

Martin AA, Freitas RA, Sassaki GL, et al. Chemical structure and physical-chemical properties of mucilage from the leaves of Pereskia aculeate. Food Hydrocoll. 2017; 70: 20-28p. https://doi.org/10.1016/j.foodhyd.2017.03.020

Masuelli MA. Mark-Houwink parameters for aqueous-soluble polymers and biopolymers at various temperature. JPBPC. 2014; 2: 37-43p. DOI:10.12691/jpbpc-2-2-2

Neira-Velazquez MG, Rondrguez-Hernandez M, Hernandez-Hernandez E, et al. Polymer molecular weight measurement. Handbook of polymer synthesis, characterisation, and processing. John Wiley & sons Inc. 2013. 355-366p.

https://doi.org/10.1002/9781118480793.ch17

Pawar HA, Lalitha KG. Extraction, characterization and molecular weight determination of Senna tora (L.) seed polysaccharides. Int. J Biomater. 2015. 1-7p.

https://doi.org/10.1016/j.biomaterials.2015.05.032

https://doi.org/10.1155/2015/928679.

Abel-Azim A-AA, Atta AM, Farahat MS, et al. Determination of intrinsic viscosity of polymeric compounds through a single specific viscosity measurement. Polym. 1998; 39: 6827-6833p. https://doi.org/10.1016/S0032-3861(98)00184-0

Higiro J, Herald TJ, Alavi S. Rheological study of xanthan and locust bean gum interaction in dilute solution. Food Res. Int. 2006; 39: 165-175p.

https://doi.org/10.1016/j.foodres.2005.07.011

Tanglertpaibul T, Rao MA. Intrinsic viscosity of tomato serum as affected by methods of determination and methods of processing concentrates. J Food Sci. 1987; 52: 1642-1688p. https://doi.org/10.1111/j.1365-2621.1987.tb05895.x

Vahid S, Hossein J, Mohammad SYA. Comparison of various models for obtaining the intrinsic viscosity of salep gum and sweeteners mixture in dilute solutions. Int. Food Res. J. 2011; 18: 1457-1462p.

Masuelli MA. Dextrans in aqueous solution. Experimental review on intrinsic viscosity measurements and temperature effect. JPBPC. 2013; 1:13-21p. https://doi.org/10.1155/2013/360239

Pamies R, Cifre JGH, Martinez MACL, et al. Determination of intrinsic viscosity of macromolecules and nanoparticles. Comparison of single-point and dilution procedures. Colloid Polym. Sci. 2008; 286:1223-1231p.https://doi.org/10.1007/s00396-008-1902-2

Lai LS, Tung J, Lin PS. Solution of Hsian-Tsao (Mesona procumbens Hemsl) leaf gum. Food Hydrocoll. 2000; 14:287-294p. https://doi.org/10.1016/S0268-005X(99)00069-7

Antoniou E, Themistou E, Sarkar B, et al. Structure and dynamics of dextran in binary mixtures of a good and a bad solvent. Colloid and Polym. Sci. 2007; 288: 1301-1312p.

https://doi.org/10.1007/s00396-010-2259-x

Joseph R, Devi S, Rakshit AK. Viscosity behaviour of acrylonitrile-acrylate copolymer solutions in dimethyl formamide. Polym. Int. 1991; 26: 89-92p.

https://doi.org/10.1002/pi.4990260206

Razavi SMA, HasanAbadi M, Ghadiri GhR, et al. Rheological interaction of sage seed gum with xanthan in dilute solution. Int. Food Res. J. 2013; 20: 3111-3116p.

Morris ER. Polysaccharide rheology and in mouth perception. In: Stephen AM. Food polysaccharides and their applications. New York: Marcel Dekker. 1995. 517-546p.

McMillan DEA. Comparison of five methods for obtaining the intrinsic viscosity of bovine serum albumin. Biopolymers. 1974; 13: 1367-1371p. https://doi.org/10.1002/bip.1974.360130708

Launay B, Cuvelier G, Martinez-Reyes S. Viscosity of locust bean, guar and xanthan gum solutions in the Newtonian domain: a critical examination of the log(ηsp)0-logc[η]0 master curves. Carbohydr. Polym. 1997; 34: 385-395p.

https://doi.org/10.1016/S0144-8617(97)00104-5.

Morris ER, Cutler AN, Ross-Murphy SB, et al. Concentration and shear rate dependence of viscosity in random coil polysaccharide solutions. Carbohydr. Polym. 1981; 1: 5-21p. https://doi.org/10.1016/0144-8617(81)90011-4

Graessley WW. The entanglement concept in polymer rheology. In: Graessley WW. Advances in polymer science. Vol 16. Berlin: Springer-Verlag. 1974. 1-179p.

Hager BL, Berry GC. Moderately concentrated solutions of polystyrene: I. Viscosity as a function of concentration, temperature, and molecular weight. J Polym. Sci. 1982; 20: 911-928. https://doi.org/10.1002/pol.1982.180200513




DOI: https://doi.org/10.37591/jomcct.v10i1.1712

Refbacks

  • There are currently no refbacks.