Open Access Open Access  Restricted Access Subscription or Fee Access

MRDCI Study of Doublet States of CO+ Ion and Its Spectroscopic Properties

Arnestar Syiemiong, Shailes Swer, Ashok Kumar Jha, Heinz-Peter Liebermann, Robert J. Buenker, Atul Saxena

Abstract


The potential energy curves of 2 +   , 2   , 2 +   , C  and 2 D  electronic states of CO+
ion have been calculated using the multi-reference single and double excitation configurationinteraction
method (MRDCI). The potential energy curves and transition dipole moment have
been calculated in the range of 1.6 to 7.0 a0 internuclear distance (R). The calculated
potential energy curves found to converge smoothly to the correct dissociation channel. The
potential energy curves and transition dipole moment are used as the input in the Level 8.0
program of R. J. Le Roy for the spectroscopic studies of CO+ ion.


Keywords: MRDCI, spectroscopic, electronic states, transition, potential energy

Cite this Article
Arnestar Syiemiong, Shailes Swer, Ashok Kumar Jha, Heinz-Peter Liebermann, Robert J. Buenker, Atul Saxena. MRDCI Study of Doublet States of CO+ Ion and Its Spectroscopic Properties. Research & Reviews: Journal of Physics. 2020; 9(1): 1–10p.


Keywords


MRDCI, Potential energy curves, transition dipole moment

Full Text:

PDF

References


A. B. Pluvinel and F. Baldet, Comput. Rend. 148, 759 (1909)

K. N. Rao, Astro. phys. J. 111 306 (1950)

P.H. Krupenie, The Band Spectrum of Carbon Monoxide, NSRDS-NBS 5 (Washington: US. Govt. Print. Office) (1966)

K.P. Huber, G. Herzberg, Molecular Spectra and Molecular Structure, vol. 4, Constants of Diatomic Molecules, Van Nostrand Reinhold, New York, (1979)

J. A. Coxon and S. C. Foster, J. Mol. Spectrosc. 93 117 (1982)

M. Bogey, C. Demuynck, J.L. Destombes, J. Chem. Phys. 79, 4704 (1983)

C. Haridass, C. V. V. Prasad and S. P. Reddy, Astrophys. J. 388 669 (1992)

C. Haridass, C. V. V. Prasad and S. P. Reddy, J. Mol. Spectrosc. 199 180 (2000)

J. A. Coxon, R. Kepa and I. Piotrowska, J. Mol. Spectrosc. 262 107 (2010)

P.B. Davies, W.J. Rothwell, J. Chem. Phys. 83, 5450 (1985)

P. Baltzer, M. Lundqvist, B. Wannberg, L. Karlsson, M. Larsson, M.A. Hayes, J.B. West, M.R.F. Siggel, A.C. Parr, J. L. Dehmer, J. Phys. B 27, 4915 (1994)

X. H. Yang, Y. Q. Chen, P. P. Cai, R. J. Wang and J. J. Lu, Chin. J. Chem. Phys. 13 406 (2000)

X. H. Yang, Y. D. Wu and Y. Q. Chen, J. Mol. Spectrosc. 245 84 (2007)

H. Zhuang, X. H. Yang, S. H. Wu, Z.Y. Bi, L. S. Ma, Y. Y. Liu and Y. Q. Chen, Mol. Phys. 99 1447 (2001)

Y. D. Wu, X. H. Yang, Y. C. Guo and Y. Q. Chen, J. Mol. Spectrosc. 248 81 (2008)

X. P. Shao, T. L. Gong, L. Wu and X. H. Yang, J. Quant. Spectrosc. Ra. 112 1005 (20110

W. Li, X. H. Yang, Y. J. Gan, L. Wu, Y. C. Guo, Y. Y. Liu and Y. Q. Chen, Spectrosc. Spect. Anal. 25 1250 (2005)

Paul H. Krupenie and Stanley Weissman, J. Chem. Phys. 43, 1529 (1965).

C. M. Marian, M. Larsson, B. J. Olsson, and P. Sigray, Chem. Phys. 130, 361 (1989)

H. Lavendy, J. M. Robbe, and J. P. Flament, Chem. Phys. Lett. 205, 456 (1993)

P.A. Martin a, M. Feher, J.Chem. Phys. Lett. 232 491-496 (1995)

K. Okada and S. Iwata,J. Chem. Phys., Vol. 112, No. 4, 22 January 2000.

G. J. Va´zquez and J. M. Amero, H. P. Liebermann, H. Lefebvre-Brion, J. Phys. Chem. A, 113, 13395 (2009)

D. Shi, W. Li, J. Sun, Z. Zhu, Y. Liu, J. Comput. and Theor. Chem. 978, 126 (2011)

R. J. Buenker, and S. D. Peyerimhoff, Theoret. Chim. Acta 35, 33 (1974);

R. J. Buenker, and S. D. Peyerimhoff, Theoret. Chim. Acta 39, 217 (1975);

R. J. Buenker, Int.J. Quantum Chem. 29,435 (1986);

R. J. Buenker, in Proceedings of the Workshop on Quantum Chemistry and Molecular Physics, ed. P. G. Burton (University of Wollongong Press, Wollongong, Australia, 1980), p. 1. 5. 1.;

R. J. Buenker,in Current Aspects of Quantum Chemistry 1981, Studies in Physical and Theoretical Chemistry Vol. 21, p 17. 81 (Elsevier, Amsterdam, (1982).

R. J. Buenker, R. A. Phillips, J. Mol. Structure (THEOCHEM) 123, 291 (1985);

S. Krebs, and R. J. Buenker, J. Chem. Phys. 103, 5613 (1995).

R. J. Buenker and S. Krebs, in Recent Advances in Multireference Methods (ed. Hirao), p. 1. (World Scientific, Singapore, 1999).

R.A. Kendall, T. H. Dunning Jr., R. J. Harrison, J. Chem. Phys. 96, 6796 (1992).

R. J. Le Roy, A computer program for solving the radial Schrodinger equation for bound and quasibound levels, University of Waterloo Chemical Physics Research Report No. CP-663 (2007).

G. Herzberg, Molecular Spectra and Molecular Structure I. Spectra of Diatomic Molecules, D. Van Nostrand Company, Inc, New York (1961)

J. Rychlewski, Phys. Rev. A. 45. 5270 (1992)

A. A. Radzig and B. M. Smironv, Reference Data on Atoms, Molecules, and Ions (1985). The proper average is taken among the multiplets

M. Evans and C. Y. Ng, J. Chem. Phys. 111. 8879 (1999)

P. Rosmus and H.-J. Werner, Mol. Phys. 47, 661 (1982)

S.R. Langhoff and C.W. Bauschlicher, J. Chem. Phys. 88, 329 (1988)

R. Kepa, A. Kocan, M. Ostrowska, I. Piotrowska-Domagala, Z. Jakubek, and M. Zachwieja, J. Mol. Spectrosc. 228, 66 (2004)

N. Honjou and F. Sasaki, Mol. Phys. 37, 1593-1604 (1979)

W. Szajna, R. Kepa, and M. Zachwieja, Eur. Phys. J. D 30, 49 (2004)

D. Cossart and C. Cossart-magos, J. Mol. Spectrosc. 141, 59 (1990)

A.K Jha, A. Syiemiong, S. Swer, and A. Saxena, J. Appd. Fund. Sc., ISSN 2395-5554 (Online)|Vol 1(2), (2015).

W. Xing , D. Shi , J. Zhang , J. Sun , Z. Zhu, J. Quant. Spectrosc. Ra. Tran. 210, 62 (2018)

A. Syiemiong, S. Swer, A. K. Jha and A. Saxena, J. Appd. Fund. Sc., ISSN 2395-5554 (Online)|Vol 4(1), (2018).


Refbacks

  • There are currently no refbacks.