Open Access Open Access  Restricted Access Subscription or Fee Access

Synthesis and Characterization of Mg doped ZnFe2O4

Kemi Y Adewale, Itegbeyogene P Ezekiel

Abstract


Abstract

Single-phase Mg-doped ZnFe2O4 nanoparticles with x= 0, 0.3, 0.5, 0.7 have been prepared by the glycol-thermal method without any subsequent calcination. The crystallite size, microstructure and magnetic properties of the prepared nanoparticles were studied using X-ray diffraction (XRD), high resolution scanning electron microscope (TEM), Mössbauer spectroscopy and vibrating sample magnetometer at room temperature. The XRD results revealed the production of a sharp single cubic spinel structure in all the synthesized samples without any impurity peak with the average crystallite size of about 19–28 nm. It was noticed that the lattice parameter varies as the Mg2+ ion concentration increases. 57Mössbauer measurement showed that the nano ferrites exhibit ferrimagnetic and superparamagnetic states. Magnetization measurements confirmed the superparamagnetic behaviour of the samples. The highest coercivity and saturation magnetization were observed at x=0.3. The saturation magnetization (MS) decreases while coercivity (HC) varies with an increase in the concentration of Mg2+ ion.

 

Keywords: Nanoferrites, Superparamagnetic, Single Phase, Lattice Parameter

Cite this Article

Kemi Y. Adewale, Itegbeyogene P.Ezekiel. Synthesis and Characterization of Mg doped ZnFe2O4. Research & Reviews: Journal of Physics. 2020; 9(1): 57–65p.


Keywords


nanoferrites, superparamagnetic, single phase, lattice parameter

Full Text:

PDF

References


Tanaka, T., Shimazu, R., Nagai, H., Tada, M., Nakagawa, T., Sandhu, A., Handa, H. and Abe, M., 2009. Preparation of spherical and uniform-sized ferrite nanoparticles with diameters between 50 and 150 nm for biomedical applications. Journal of magnetism and magnetic materials, 321(10), pp.1417-1420.

Srivastava, M., Ojha, A.K., Chaubey, S. and Materny, A., 2009. Synthesis and optical characterization of nanocrystalline NiFe2O4 structures. Journal of Alloys and Compounds, 481(1-2), pp.515-519.

Gimenes, R., Baldissera, M.D., Da Silva, M.R.A., Da Silveira, C.A., Soares, D.A.W., Perazolli, L.A., Da Silva, M.R. and Zaghete, M.A., 2012. Structural and magnetic characterization of MnxZn1− xFe2O4 (x= 0.2; 0.35; 0.65; 0.8; 1.0) ferrites obtained by the citrate precursor method. Ceramics international, 38(1), pp.741-746.

Sharifi, I., Shokrollahi, H. and Amiri, S., 2012. Ferrite-based magnetic nanofluids used in hyperthermia applications. Journal of magnetism and magnetic materials, 324(6), pp.903-915.

Gupta, N., Verma, A., Kashyap, S.C. and Dube, D.C., 2007. Microstructural, dielectric and magnetic behavior of spin-deposited nanocrystalline nickel–zinc ferrite thin films for microwave applications. Journal of Magnetism and Magnetic Materials, 308(1), pp.137-142.

Hajarpour, S., Gheisari, K. and Raouf, A.H., 2013. Characterization of nanocrystalline Mg0. 6Zn0. 4Fe2O4 soft ferrites synthesized by glycine-nitrate combustion process. Journal of magnetism and magnetic materials, 329, pp.165-169.

Azam, A., Jawad, A., Ahmed, A.S., Chaman, M. and Naqvi, A.H., 2011. Structural, optical and transport properties of Al3+ doped BiFeO3 nanopowder synthesized by solution combustion method. Journal of Alloys and Compounds, 509(6), pp.2909-2913.

Jawad, A., Ahmed, A.S., Ashraf, S.S.Z., Chaman, M. and Azam, A., 2012. Exploring the dielectric behaviour of nano-structured Al3+ doped BiFeO3 ceramics synthesized by auto ignition process. Journal of alloys and compounds, 530, pp.63-70.

Khot, S.S., Shinde, N.S., Ladgaonkar, B.P., Kale, B.B. and Watawe, S.C., 2011. Magnetic and structural properties of magnesium zinc ferrites synthesized at different temperature. Adv Appl Sci Res, 2(4), pp.460-471.

Heiba, Z.K., Nasser, M.Y., andAbd-Elkader, O.H., 2014. Structural and magnetic properties correlated with cation distribution of Mo-substituted cobalt ferrite nanoparticles.Journal of Magnetism and Magnetic Materials, 368, pp. 246-251.

Singh, N., Agarwal, A., Sanghi, S. and Khasa, S., 2012. Dielectric loss, conductivity relaxation process and magnetic properties of Mg substituted Ni–Cu ferrites. Journal of magnetism and magnetic materials, 324(16), pp.2506-2511.

De Vidales, J.M., López-Delgado, A., Vila, E. and Lopez, F.A., 1999. The effect of the starting solution on the physico-chemical properties of zinc ferrite synthesized at low temperature. Journal of Alloys and Compounds, 287(1-2), pp.276-283.

Akhter, S., Paul, D.P., Hakim, M.A., Saha, D.K., Al-Mamun, M. and Parveen, A., 2011. Synthesis, Structural and Physical Properties of Cu 1–x Zn x Fe 2 O 4 Ferrites. Materials Sciences and Applications, 2(11), p.1675.

Adewale, K.Y., Ezekiel, I.P., 2019.Magnetic and Mössbauer studies of Ca x Zn1−xFe2O4 nanoferrites.International Journal of Solid-State Materials, 5 (2), pp.23–28.

Gismelseed, A.M., Mohammed, K.A., Widatallah, H.M., Al-Rawas, A.D., Elzain, M.E. and Yousif, A.A., 2010. Structure and magnetic properties of the ZnxMg1-xFe2O4 ferrites. In Journal of Physics: Conference Series (Vol. 217, No. 1, p. 012138). IOP Publishing.

Abdallah, H.M.I., 2012. Synthesis, Magnetic and Electrical Characterizations of Nanoparticle Ferrites (Doctoral dissertation, University of KwaZulu-Natal, Durban).

Song, Q., 2005. Size and shape-controlled synthesis and superparamagnetic properties of spinel ferrites nanocrystals (Doctoral dissertation, Georgia Institute of Technology).

Abdallah, H.M.I., Moyo, T. and Msomi, J.Z., 2011. Mössbauer and Electrical Studies of Mn x Co 1− x Fe 2 O 4 Compounds Prepared via Glycothermal Route. Journal of superconductivity and novel magnetism, 24(1-2), pp.669-673.

Gismelseed, A.M., Mohammed, K.A., Widatallah, H.M., Al-Rawas, A.D., Elzain, M.E. and Yousif, A.A., 2010. Structure and magnetic properties of the ZnxMg1-xFe2O4 ferrites. In Journal of Physics: Conference Series (Vol. 217, No. 1, p. 012138). IOP Publishing.

Abdallah, H.M.I., 2012. Synthesis, Magnetic and Electrical Characterizations of Nanoparticle Ferrites (Doctoral dissertation, University of KwaZulu-Natal, Durban).

Roumaih, K., Manapov, R.A., Sadykov, E.K. and Pyataev, A.V., 2005. Mössbauer studies of Cu1− xNixFeMnO4 spinel ferrites. Journal of magnetism and magnetic materials, 288, pp.267-275.

Rao, B.P., Rao, P.S., Murthy, G.V.S. and Rao, K.H., 2004. Mössbauer study of the system Ni0. 65Zn0. 35Fe2− xScxO4. Journal of magnetism and magnetic materials, 268(3), pp.315-320.

Msomi, J.Z. and Moyo, T., 2008. Temperature dependence of the hyperfine fields in NiFe 2 O 4 and CuFe 2 O 4 oxides. In HFI/NQI 2007 (pp. 93-99). Springer, Berlin, Heidelberg.

Andreev, S.V.,Bartashevich, M.I., Pushkarsky, V.I., Maltsev, V.N., Pamyatnykh, L.A., Tarasov, E.N., Kudrevatykh N.V., andGoto, T., 1997. Law of approach to saturation in highly anisotropic ferromagnets application to Nd Fe B melt-spun ribbons.Journal of alloys and compounds, 260 (1-2) pp.196-200.

Hankare, P.P., Pandav, R.S., Patil, R.P., Vader, V.T. and Garadkar, K.M., 2012. Synthesis, structural and magnetic properties of copper substituted nickel manganite. Journal of alloys and compounds, 544, pp.197-202.

Hankare, P.P., Sanadi, K.R., Garadkar, K.M., Patil, D.R. and Mulla, I.S., 2013. Synthesis and characterization of nickel substituted cobalt ferrite nanoparticles by sol–gel auto-combustion method. Journal of Alloys and Compounds, 553, pp.383-388.

Ayyappan, S., Raja, S.P., Venkateswaran, C., Philip, J. and Raj, B., 2010. Room temperature ferromagnetism in vacuum annealed ZnFe 2 O 4 nanoparticles. Applied Physics Letters, 96(14), p.143106.

Goya, G.F. and Rechenberg, H.R., 1999. Ionic disorder and Néel temperature in ZnFe2O4 nanoparticles. Journal of magnetism and magnetic materials, 196, pp.191-192.

Ashiq, M.N., Iqbal, M.J., Najam-ul-Haq, M., Gomez, P.H. and Qureshi, A.M., 2012. Synthesis, magnetic and dielectric properties of Er–Ni doped Sr-hexaferrite nanomaterials for applications in High density recording media and microwave devices. Journal of magnetism and magnetic materials, 324(1), pp.15-19.

Jauhar, S. and Singhal, S., 2014. Substituted cobalt nano-ferrites, CoMxFe2− xO4 (M= Cr3+, Ni2+, Cu2+, Zn2+; 0.2≤ x≤ 1.0) as heterogeneous catalysts for modified Fenton׳ s reaction. Ceramics International, 40(8), pp.11845-11855.

Dar, M.A., Verma, V., Gairola, S.P., Siddiqui, W.A., Singh, R.K. and Kotnala, R.K., 2012. Low dielectric loss of Mg doped Ni–Cu–Zn nano-ferrites for power applications. Applied surface science, 258(14), pp.5342-5347.

Sozeri, H., Durmus, Z. and Baykal, A., 2012. Structural and magnetic properties of triethylene glycol stabilized ZnxCo1− xFe2O4 nanoparticles. Materials Research Bulletin, 47(9), pp.2442-2448.

Yadoji, P., Peelamedu, R., Agrawal, D. and Roy, R., 2003. Microwave sintering of Ni–Zn ferrites: comparison with conventional sintering. Materials Science and Engineering: B, 98(3), pp.269-278.

Sarangi, P.P., Vadera, S.R., Patra, M.K. and Ghosh, N.N., 2010. Synthesis and characterization of pure single phase Ni–Zn ferrite nanopowders by oxalate based precursor method. Powder Technology, 203(2), pp.348-353.

Thummer, K.P., Chhantbar, M.C., Modi, K.B., Baldha, G.J. and Joshi, H.H., 2004. Localized canted spin behaviour in ZnxMg1. 5− xMn0. 5FeO4spinelferritesystem. Journal of magnetism and magnetic materials, 280(1), pp.23-30.

Pradeep, A., Priyadharsini, P. and Chandrasekaran, G., 2008. Sol–gel route of synthesis of nanoparticles of MgFe2O4 and XRD, FTIR and VSM study. Journal of Magnetism and Magnetic Materials, 320(21), pp.2774-2779.

Šepelák, V., Baabe, D., Mienert, D., Litterst, F.J. and Becker, K.D., 2003. Enhanced magnetisation in nanocrystalline high-energy milled MgFe2O4. Scripta Materialia, 48(7), pp.961-966.

Ichiyanagi, Y., Kubota, M., Moritake, S., Kanazawa, Y., Yamada, T. and Uehashi, T., 2007. Magnetic properties of Mg-ferrite nanoparticles. Journal of Magnetism and Magnetic Materials, 310(2), pp.2378-2380.

Hankare, P.P., Patil, R.P., Jadhav, A.V., Garadkar, K.M. and Sasikala, R., 2011. Enhanced photocatalytic degradation of methyl red and thymol blue using titania–alumina–zinc ferrite nanocomposite. Applied Catalysis B: Environmental, 107(3-4), pp.333-339.

Bedoya-Hincapié, C.M., Restrepo-Parra, E. and López-Carreño, L.D., 2018. Applications of magnetic and multiferroic core/shell nanostructures and their physical properties. Dyna, 85(207), pp.29-35.

Šepelák, V., Wilde, L., Steinike, U. and Becker, K.D., 2004. Thermal stability of the non-equilibrium cation distribution in nanocrystalline high-energy milled spinel ferrite. Materials Science and Engineering: A, 375, pp.865-868.

Hankare, P.P., Sanadi, K.R., Pandav, R.S., Patil, N.M., Garadkar, K.M. and Mulla, I.S., 2012. Structural, electrical and magnetic properties of cadmium substituted copper ferrite by sol–gel method. Journal of Alloys and Compounds, 540, pp.290-296.


Refbacks

  • There are currently no refbacks.