Open Access Open Access  Restricted Access Subscription or Fee Access

Tunable optomechanical induced transparency and Fano-resonance in double cavity Optomechanical system with nonreciprocal coupling

Anjan Samanta, Paresh Chandra Jana

Abstract


We explore theoretically optomechanical induced transparency and asymmetric Fano-Line shape profile of a double cavity optomechanical system with nonreciprocal coupling at weak and strong coupling regime. The model system consists of one mechanical mode and two optical modes. The optical mode is coupled via nonreciprocal transition. The mechanical model is coupled to the optical model via optomechanical interaction. We have analyzed induced transparency and Fano-Line shape profile and present a remarkable effect in optics. The result shows sharp asymmetric Fano-resonance and tunable transparency. The present proposal can be used to design photonic devices like optical switches, optical flip-flop and it offers a new path in non-linear quantum optics. 


Keywords


Transparency, fano-resonance, optical switches, cavity optomechanics, nonlinear optics, optical flip-flop

Full Text:

PDF

References


Harris SE, Field JE, Imamoğlu A. Nonlinear optical processes using electromagnetically induced transparency. Phys Rev Lett. 1990; 64(10): 1107–1110.

Boller KJ, Imamoğlu A, Harris SE. Observation of electromagnetically induced transparency. Phys Rev Lett. 1991; 66(20): 2593–2596.

Turukhin AV, Sudarshanam VS, Shahriar MS, Musser JA, Ham BS, Hemmer PR. Observation of ultraslow and stored light pulses in a solid. Phys Rev Lett. 2001; 88(2): 023602.

Kippenberg TJ, Vahala KJ. Cavity optomechanics: back-action at the mesoscale. Science. 2008; 321(5893): 1172–1176.

Yasir K, Liu WM. Controlled Electromagnetically Induced Transparency and Fano Resonances in Hybrid BEC-Optomechanics. Sci Rep. 2016; 6(1): 22651. https://doi.org/10.1038/srep22651

Scully MO, Zubairy MS. Quantum Optics. Cambridge: Cambridge University Press; 1997.

http://dx.doi.org/10.1017/CBO9780511813993

Safavi-Naeini AH, Alegre TM, Chan J, Eichenfield M, Winger M, Lin Q, Hill JT, Chang DE, Painter O. Electromagnetically induced transparency and slow light with optomechanics. Nature. 2011; 472(7341): 69–73.

Mukherjee K, Jana PC. Optically induced transparency in coupled micro-cavities: tunable Fano resonance. Eur Phys J D. 2019; 73(12): 1–8.

Akram MJ, Ghafoor F, Saif F. Electromagnetically induced transparency and tunable fano resonances in hybrid optomechanics. J Phys B: Atom Molec Opt Phys. 2015; 48(6): 065502.

Fano resonance and spectral compression in a ring resonator drop filter with feedback. Optics Communications, 2011, 284(1): 476–479

Peng B, Özdemir ŞK, Lei F, Monifi F, Gianfreda M, Long GL, Fan S, Nori F, Bender CM, Yang L. Parity-time-symmetric whispering-gallery microcavities. Nat Phys. 2014; 10(5): 394–398.

Miroshnichenko AE, Flach S, Kivshar YS. Fano resonances in nanoscale structures. Rev Mod Phys. 2010; 82(3): 2257–2298.

Luk'yanchuk B, Zheludev NI, Maier SA, Halas NJ, Nordlander P, Giessen H, Chong CT. The Fano resonance in plasmonic nanostructures and metamaterials. Nat mater. 2010; 9(9): 707–715.

Christ A, Tikhodeev SG, Gippius NA, Kuhl J, Giessen H. Waveguide-plasmonpolaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab. Phys Rev Lett. 2003; 91(18): 183901.

Teufel JD, Li D, Allman MS, Cicak K, Sirois AJ, Whittaker JD, Simmonds RW. Circuit cavity electromechanics in the strong-coupling regime. Nature. 2011; 471(7337): 204–208.

Agarwal GS, Huang S. Optomechanical systems as single-photon routers. Phys Rev A. 2012; 85(2): 021801.

Qu K, Agarwal GS. Phonon-mediated electromagnetically induced absorption in hybrid opto-electromechanical systems. Phys Rev A. 2013; 87(3): 031802.

Hill JT, Safavi-Naeini AH, Chan J, Painter O. Coherent optical wavelength conversion via cavity optomechanics. Nat Commun. 2012; 3(1): 1–7.

Huang S, Agarwal GS. Normal-mode splitting and antibunching in Stokes and anti-Stokes processes in cavity optomechanics: radiation-pressure-induced four-wave-mixing cavity optomechanics. Phys Rev A. 2010; 81(3): 033830.

Agarwal GS, Huang S. Optomechanical systems as single-photon routers. Phys Rev A. 2012; 85(2): 021801.

Zhang JQ, Li Y, Feng M, Xu Y. Precision measurement of charge number with optomechanically induced transparency. arXiv preprint arXiv:1208.0067. 2012.

Wang Q, Zhang JQ, Ma PC, Yao CM, Feng M. Precision measurement of the environmental temperature by tunable double optomechanically induced transparency with a squeezed field. Phys Rev A. 2015; 91(6): 063827.

Wang DY, Bai CH, Wang HF, Zhu AD, Zhang S. Steady-state mechanical squeezing in a hybrid atom-optomechanical system with a highly dissipative cavity. Sci rep. 2016; 6(1): 1–8.

Dalafi A, Naderi MH, Motazedifard A. Effects of quadratic coupling and squeezed vacuum injection in an optomechanical cavity assisted with a Bose-Einstein condensate. Phys Rev A. 2018; 97(4): 043619.

O’Connell AD, Hofheinz M, Ansmann M, Bialczak RC, Lenander M, Lucero E, Neeley M, Sank D, Wang H, Weides M, Wenner J. Quantum ground state and single-phonon control of a mechanical resonator. Nature. 2010; 464(7289): 697–703.

Chen B, Jiang C, Zhu KD. Slow light in a cavity optomechanical system with a Bose-Einstein condensate. Phys Rev A. 2011; 83(5): 055803.

Hou BP, Wang SJ, Yu WL, Sun WL. Double electromagnetically induced two-photon transparency in a five-level atomic system. Phys Lett A. 2006; 352(4–5): 462–466. ISSN 0375-9601. https://doi.org/10.1016/j.physleta.2005.12.018.

Chen Y, Wei XG, Ham BS. Optical properties of an N-type system in Doppler-broadened multilevel atomic media of the rubidium D2 line. J Phys B: Atom Molec Opt Phys. 2009; 42(6): 065506.

Samanta, A., Mukherjee, K., Jana, P. C., Tunable induced transparency and Fano-resonance in double cavity optomechanical system.,Int J Phys Res Appl. 2021; 4(1). 019-025pp. ISSN -2766-2748.

Qu K, Agarwal GS. Fano resonances and their control in optomechanics. Phys Rev A. 2013; 87(6): 063813.

Akram MJ, Ghafoor F, Saif F. Electromagnetically induced transparency and tunable fano resonances in hybrid optomechanics. J Phys B: Atom Mol Opt Phys. 2015; 48(6): 065502.

Liu N, Hentschel M, Weiss T, Alivisatos AP, Giessen H. Three-dimensional plasmon rulers. Science. 2011; 332(6036): 1407–1410.

Artar A, Yanik AA, Altug H. Directional double Fano resonances in plasmonic hetero-oligomers. Nano lett. 2011; 11(9): 3694–3700.

Liu N, Mukherjee S, Bao K, Brown LV, Dorfmüller J, Nordlander P, Halas NJ. Magnetic plasmon formation and propagation in artificial aromatic molecules. Nano lett. 2012; 12(1): 364–369.

Fano U. Effects of configuration interaction on intensities and phase shifts. Phys Rev. 1961; 124(6): 1866–1878.

Li BB, Xiao YF, Zou CL, Jiang XF, Liu YC, Sun FW, Li Y, Gong Q. Experimental controlling of Fano resonance in indirectly coupled whispering-gallery microresonators. Appl Phys Lett. 2012; 100(2): 021108.

Reed GT, Mashanovich G, Gardes FY, Thomson DJ. Silicon optical modulators. Nat Photonics. 2010; 4(8): 518–526.

Chang JH, Lin WH, Wang PC, Taur JI, Ku TA, Chen WT, Yan SJ, Wu CI. Solution-processed transparent blue organic light-emitting diodes with graphene as the top cathode. Scientific reports. 2015; 5(1): 1–6.

Vahala KJ. Optical microcavities. Nature. 2003; 424(6950): 839–846.

Vahala KJ. Advanced Series in Applied Physics: Volume 5. Optical Microcavities. California Institute of Technology, USA. December 2004. World Scintific; 2004. https://doi.org/10.1142/5485

Peng B, Özdemir ŞK, Lei F, Monifi F, Gianfreda M, Long GL, Fan S, Nori F, Bender CM, Yang L. Parity-time-symmetric whispering-gallery microcavities. Nat Phys. 2014; 10(5): 394–398.

Peng B, Özdemir ŞK, Rotter S, Yilmaz H, Liertzer M, Monifi F, Bender CM, Nori F, Yang L. Loss-induced suppression and revival of lasing. Science. 2014; 346(6207): 328–332.

Li S, Ge Q, Wang Z, Martín JC, Yu B. Optical bistability via an external control field in all-fiber ring cavity. Sci Rep. 2017; 7(1): 1–5.


Refbacks

  • There are currently no refbacks.