Studies on Effect of Varying Geometric Parameters of Solar Receiver Tube on Thermal Loss Suffered By It

Arun Madival, Jai Kumar S., Sudeshkumar C.A., Vishalreddy ., M.R. Srinivas, M.S. Krupashankara

Abstract


Abstract
The radiative and convective heat losses from a solar receiver tube at a given operating temperature are a function of temperature of the outer glass envelope and outer surface area of the glass envelope. But the temperature of the outer glass envelope and its outer surface area are themselves a function of outer diameter of the heat pipe enclosed within the glass envelope and the annular gap between the outer surface of the heat pipe and the inner surface of the glass envelope. Hence the thermal losses associated with the receiver tube are a function of the size (outer diameter) of the heat pipe, annular gap between the glass envelope and the heat pipe, the operating temperature of the receiver tube. Theoretical thermal model is developed that describes various heat transfer phenomenon taking place in the solar receiver tube, under valid physical assumptions. Theoretical heat loss investigation is conducted by varying the values of outer diameter of the heat pipe (25–75 mm) and annular gap (25–75 mm) at three different operating temperatures of the receiver tube: 150, 300 and 450°C respectively, employing the thermal model developed. The radiative, convective and hence total losses associated with a solar receiver tube are quantified. The effect of varying the geometric parameters of the receiver tube on the heat loss suffered by it is studied.
Keywords: Solar receiver tube, operating temperature, thermal losses, annular gap

Cite this Article:
Arun Madival, Jai Kumar S, Sudeshkumar CA, Vishalreddy, Srinivas MR, Krupashankara MS. Studies on Effect of Varying Geometric Parameters of Solar Receiver Tube on Thermal Loss Suffered By It. Research & Reviews: Journal of Physics. 2015; 4(1): 10–21p.


Full Text:

PDF


DOI: https://doi.org/10.37591/rrjophy.v4i1.505

Refbacks

  • There are currently no refbacks.