Open Access Open Access  Restricted Access Subscription or Fee Access

Gluconic Acid: Properties, Microbial Production and Applications in Food and Agriculture: Critical Review

Ramzi A. Abd Alsaheb, Jaafar Kamil Abdullah

Abstract


Gluconic acid is one of the most essential natural acids and is moderately obtained from glucose by unpretentious oxidation response process. The response is simplified through glucose dehydrogenase bacteria such as (Gluconobacter) and enzyme glucose oxidase (fungi). The production of gluconic acid by microbes is the desired procedure. The typical broadly applied fermentation technique is summarized by using fungi (Aspergillus niger). Derivatives for gluconic acid; the main ones like sodium gluconate, have big implementations in the agricultural and food industries. Gluconic acid is used in many applications in pharmaceuticals, food, textile, cement industries, metal chelating agent, leather, beverages and dairy. Gluconic acid produced by fermentation process include fungi is well established commercially. Therefore the mechanism of fermentation processes, efficient microorganism are used to give high yields, more economical process, efficient conversion of carbon sources from cheap substrates for production gluconic acid with more yield and quality. This review offers an extensive analytical study for the gluconic acid strategy industry and applications in food and agriculture. Also, this modern article completely includes study of the literature of modern years on the expansion of global market production for the gluconic acid.


Keywords


Gluconic acid, Aspergillus niger, fermentation, microbial production, fungi

Full Text:

PDF

References


Khan, Ibrar, Sadia Qayyum, Farhana Maqbool, Azam Hayat, and Munnazza Sharif Farooqui. "Microbial organic acids production, biosynthetic mechanism and applications-Mini review." (2017).

Hustede H, Haberstroh HJ, Schinzig E. Gluconic acid. Ullmann's encyclopedia of industrial chemistry. 2000 Jun 15.

Ramachandran, S., S. Nair, C. Larroche, and A. Pandey. "Gluconic Acid." In Current Developments in Biotechnology and Bioengineering, pp. 577-599. Elsevier, 2017.

Loeza-Corte, J. Manuel, J. R. Verde-Calvo, F. Cruz-Sosa, E. J. Vernon-Carter, and S. Huerta-Ochoa. "L-arabinose production by hydrolysis of mesquite gum by a crude extract with¿-L-arabinofuranosidase activity from Aspergillus niger." Revista Mexicana de Ingeniería Química 6, no. 3 (2007): 259-265.

Zhang, Hongsen, Gang Liu, Jian Zhang, and Jie Bao. "Fermentative production of high titer gluconic and xylonic acids from corn stover feedstock by Gluconobacter oxydans and techno-economic analysis." Bioresource technology 219 (2016): 123-131.

García García, Isidoro, Ana María Cañete Rodríguez, Inés María Santos-Dueñas, Jorge Jiménez Hornero, Armin Ehrenreich, Wolfgang Liebl, Teresa García-Martínez, and Juan C. Mauricio. "Biotechnologically relevant features of gluconic acid production by acetic acid bacteria." (2017).

Wang, Da-Ming, Lei Sun, Wen-Jing Sun, Feng-Jie Cui, Jin-Song Gong, Xiao-Mei Zhang, Jin-Song Shi, and Zheng-Hong Xu. "A membrane-bound gluconate dehydrogenase from 2-keto-D-gluconic acid industrial producing strain Pseudomonas plecoglossicida JUIM01: purification, characterization, and gene identification." Applied biochemistry and biotechnology 188, no. 4 (2019): 897-913.

Wu, Tsung-Ta, Ching-Chung Ko, Shu-Wei Chang, Sung-Chyr Lin, and Jei-Fu Shaw. "Selective oxidation of glucose for facilitated trehalose purification." Process Biochemistry 50, no. 6 (2015): 928-934.

Morthensen, Sofie T., Jianquan Luo, Anne S. Meyer, Henning Jørgensen, and Manuel Pinelo. "High performance separation of xylose and glucose by enzyme assisted nanofiltration." Journal of Membrane Science 492 (2015): 107-115.

Cui, Caixia, Haibin Chen, Biqiang Chen, and Tianwei Tan. "Genipin cross-linked glucose oxidase and catalase multi-enzyme for gluconic acid synthesis." Applied biochemistry and biotechnology 181, no. 2 (2017): 526-535.

Kornecki, Jakub F., Diego Carballares, Paulo W. Tardioli, Rafael C. Rodrigues, Ángel Berenguer-Murcia, Andrés R. Alcántara, and Roberto Fernandez-Lafuente. "Enzyme production of D-gluconic acid and glucose oxidase: successful tales of cascade reactions." Catalysis Science & Technology 10, no. 17 (2020): 5740-5771.

Papagianni M. 1.07 Organic Acidsq. Comprehensive Biotechnology. 2019 Jul 17:85.

Vandenberghe, Luciana PS, Susan G. Karp, Priscilla Z. de Oliveira, Júlio C. de Carvalho, Cristine Rodrigues, and Carlos R. Soccol. "Solid-state fermentation for the production of organic acids." In Current Developments in Biotechnology and Bioengineering, pp. 415-434. Elsevier, 2018.

Sutter, Jan-Moritz, Julia-Beate Tästensen, Ulrike Johnsen, Jörg Soppa, and Peter Schönheit. "Key enzymes of the semiphosphorylative Entner-Doudoroff pathway in the haloarchaeon Haloferax volcanii: characterization of glucose dehydrogenase, gluconate dehydratase, and 2-keto-3-deoxy-6-phosphogluconate aldolase." Journal of bacteriology 198, no. 16 (2016): 2251-2262.

Dodge TC, Valle F, inventors; Danisco US Inc, assignee. Method of uncoupling the catabolic pathway of glycolysis from the oxidative membrane bound pathway of glucose conversion. United States patent US 7,241,587. 2007 Jul 10.

Naraian R, Kumari S. Microbial production of organic acids. Microbial Functional Foods and Nutraceuticals. 2017 Oct 30:93.

Soccol, C. R., Vandenberghe, L. P., Rodrigues, C., Medeiros, A. B. P., Larroche, C., & Pandey, A. Production of organic acids by solid-state fermentation. In Current Developments in Solid-State Fermentation (2008): (pp. 205-229). Springer, New York, NY.

Ball DW. The chemical composition of honey. Journal of chemical education. 2007 Oct; 84(10):1643.

Teng, W. H., Sun, W. J., Yu, B., Cui, F. J., Qian, J. Y., Liu, J. Z., & Wei, H. Continuous conversion of rice starch hydrolysate to 2-keto-D-gluconic acid by Arthrobacter globiformis C224. Biotechnology and bioprocess engineering, (2013), 18(4), 709-714.

Singh, O. V., and R. P. Singh. "Bioconversion of grape must into modulated gluconic acid production by Aspergillus niger ORS‐4• 410." Journal of applied microbiology 100, no. 5 (2006): 1114-1122.

Xie, B., Liu, Y., Zou, H., Son, Y., Wang, H., Wang, H., & Shao, J. Determination of D-glucaric acid and/or D-glucaro-1, 4-lacton in different apple varieties through hydrophilic interaction chromatography. Food chemistry. (2016), 203, 1-7.

Xie, Baogang, Yalan Liu, Huiqin Zou, Yong Son, Huiyun Wang, Haipeng Wang, and Jianghua Shao. "Determination of D-glucaric acid and/or D-glucaro-1, 4-lacton in different apple varieties through hydrophilic interaction chromatography." Food Chemistry 203 (2016): 1-7.

Alsaheb, R.A.A., Elsayed Ahmed Elsayed, Roslinda Abd Malek, Nur Fashya Musa, Hesham Ali El Enshasy. Production D-Lactic Acid From Cassava Starch By Lactobacillus Delbruekii In The Semi Industrial Scale 16 L Bioreactor, "INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH", 2019, 8 (10) , 2517-2522.

Sainz, F., D. Navarro, E. Mateo, M. J. Torija, and A. Mas. "Comparison of d-gluconic acid production in selected strains of acetic acid bacteria." International Journal of Food Microbiology" 222 (2016): 40-47.

Forsythe, Stephen J. The microbiology of safe food. John Wiley & Sons, 2020.

Yuan, Jianfeng, Mianbin Wu, Jianping Lin, and Lirong Yang. "Combinatorial metabolic engineering of industrial Gluconobacter oxydans DSM2343 for boosting 5-keto-D-gluconic acid accumulation." BMC biotechnology 16, no. 1 (2016): 42.

Yan, Jinxin, Jing Xu, Menghao Cao, Zhong Li, Chengpeng Xu, Xinyu Wang, Chunyu Yang, Ping Xu, Chao Gao, and Cuiqing Ma. "Engineering of glycerol utilization in Gluconobacter oxydans 621H for biocatalyst preparation in a low-cost way." Microbial cell factories 17, no. 1 (2018): 158.

Diwan, Furqan, Mubarak H. Shaikh, Samreen Fatema, and Mazahar Farooqui. "Gluconic acid aqueous solution: A bio-compatible media for one-pot multicomponent synthesis of dihydropyrano [2, 3-c] pyrazoles." Organic Communications 12, no. 4 (2019): 201.

Fijałkowski, K., Drozd, R., Żywicka, A., Junka, A. F., Kordas, M., & Rakoczy, R. (2017). Biochemical and cellular properties of Gluconacetobacter xylinus cultures exposed to different modes of rotating magnetic field. Polish Journal of Chemical Technology, 19(2), 107-114.

Stanojević, Dušan, Mirjana Antonijević-Nikolić, Ljubica Mijić, Leposava Filipović-Petrović, and Ana Matić. "Electrochemical method of obtaining calcium-gluconate." Zaštita materijala 59, no. 3 (2018): 338-346.

Giudici, Paolo, Luciana De Vero, Maria Gullo, Lisa Solieri, and Federico Lemmetti. "Fermentation strategy to produce high gluconate vinegar." Acetic Acid Bacteria 5, no. 1 (2016).

Moresi, M., and E. Parente. "FERMENTATION (INDUSTRIAL)| Production of Some Organic Acids (Citric, Gluconic, Lactic, and Propionic)." (2014): 804-815.

Znad, H., J. Markoš, and V. Baleš. "Production of gluconic acid from glucose by Aspergillus niger: growth and non-growth conditions." Process Biochemistry 39, no. 11 (2004): 1341-1345.

Lockwood, L. B., B. Tabenkin, and G. E. Ward. "The production of gluconic acid and 2-keto-gluconic acid from glucose by species of Pseudomonas and Phytomonas." Journal of bacteriology 42, no. 1 (1941): 51.

Crognale, Silvia, Maurizio Petruccioli, Massimiliano Fenice, and Federico Federici. "Fed-batch gluconic acid production from Penicillium variabile P16 under different feeding strategies." Enzyme and microbial technology 42, no. 5 (2008): 445-449.

Currie, James N., Jasper H. Kane, and Finlay Alexander. "Process for producing gluconic acid by fungi." U.S. Patent 1,893,819, issued January 10, 1933.

Shahzadi, K., Naz, S., Tariq, A., Ilyas, S., Qadeer, M. A., & Haq, I. U. Production of Calcium Gluconate by Aspergillus niger GCU-1. Pakistan Journal of Science, (2012): 64(3), 214.

LIANG, Jie, et al. "Preparation of Sodium Gluconate [J]." Hebei Chemical Engineering and Industry 1 (2007).

Poeikhampha, T., & Bunchasak, C. Effect of sodium gluconate on pH value, ammonia and short chain fatty acids concentration in batch culture of porcine cecal digesta. Journal of Applied Sciences, (2010): 10(14), 1471-1475.

Bao, J., Furumoto, K., Fukunaga, K., & Nakao, K. A kinetic study on air oxidation of glucose catalyzed by immobilized glucose oxidase for production of calcium gluconate. Biochemical engineering journal, (2001): 8(2), 91-102.

Bao, J., Koumatsu, K., Arimatsu, Y., Furumoto, K., Yoshimoto, M., Fukunaga, K., & Nakao, K. A kinetic study on crystallization of calcium gluconate in external loop airlift column and stirred tank for an immobilized glucose oxidase reaction with crystallization. Biochemical engineering journal, (2003): 15(3), 177-184.

Padovani, A. Glucose Oxidation into Gluconic Acid: From Batch to Trickle Bed Reactor (Doctoral dissertation, Dissertation for the academic degree of Doctor of Science), (2016).

Liu, J. Z., Weng, L. P., Zhang, Q. L., Xu, H., & Ji, L. N. A mathematical model for gluconic acid fermentation by Aspergillus niger. Biochemical Engineering Journal, (2003): 14(2), 137-141.

Crognale, S., Petruccioli, M., Fenice, M., & Federici, F. Fed-batch gluconic acid production from Penicillium variabile P16 under different feeding strategies. Enzyme and microbial technology, (2008): 42(5), 445-449.

Feng, G. D., Yang, S. Z., Wang, Y. H., Deng, M. R., & Zhu, H. H. Acinetobacter guangdongensis sp. nov., isolated from abandoned lead–zinc ore. International journal of systematic and evolutionary microbiology, (2014): 64(10), 3417-3421.

Attwood, M. M., Van Dijken, J. P., & Pronk, J. T. Glucose metabolism and gluconic acid production by Acetobacter diazotrophicus. Journal of Fermentation and Bioengineering, (1991):72(2), 101-105.

Vela, A. I., Sanchez-Porro, C., Aragon, V., Olvera, A., Dominguez, L., Ventosa, A., & Fernández-Garayzábal, J. F. Moraxella porci sp. nov., isolated from pigs. International journal of systematic and evolutionary microbiology, (2010): 60(10), 2446-2450.

Wang, D. M., Sun, L., Sun, W. J., Cui, F. J., Gong, J. S., Zhang, X. M., ... & Xu, Z. H. A membrane-bound gluconate dehydrogenase from 2-keto-D-gluconic acid industrial producing strain Pseudomonas plecoglossicida JUIM01: purification, characterization and gene identification. Applied biochemistry and biotechnology, (2019):188(4), 897-913.

Fowler T, Causey SC, inventors; Danisco US Inc, assignee. Enterobacteriaceae fermentation strains. United States patent US 6,916,646. 2005 Jul 12.

Ahmed, A. S., Farag, S. S., Hassan, I. A., & Botros, H. W. Production of gluconic acid by using some irradiated microorganisms. Journal of Radiation Research and Applied Sciences, (2015): 8(3), 374-380.

Dawoud, M. E., & Taleb, A. A. Evaluation of nutritional substrate and physical stress (gamma irradiation) in β-glucan productivity by mushroom (Pleurotus ostreatus). African Journal of Biotechnology, (2011): 10(69), 15578-15586.

Ma, Y., Chi, Z., Li, Y. F., Jiang, H., Liu, G. L., Hu, Z., & Chi, Z. M. Cloning, deletion, and overexpression of a glucose oxidase gene in Aureobasidium sp. P6 for Ca 2+-gluconic acid overproduction. Annals of microbiology, (2018):68(12), 871-879.

Elnaghy, M. A., & Megalia, S. E. Gluconic acid production by Penicillium puberulum. Folia microbiologica, (1975): 20(6), 504-508.

Liu, C., Zhang, J., Huang, J., Zhang, C., Hong, F., Zhou, Y., & Haruta, M. Efficient Aerobic Oxidation of Glucose to Gluconic Acid over Activated Carbon‐Supported Gold Clusters. ChemSusChem, (2017:10(9), 1976-1980.

Cho, Y. K., & Bailey, J. E. Glucoamylase and glucose oxidase preparations and their combined application for conversion of maltose to gluconic acid. Biotechnology and Bioengineering, (1977): 19(2), 185-198.

Mafra, A. C. O., Furlan, F. F., Badino, A. C., & Tardioli, P. W. Gluconic acid production from sucrose in an airlift reactor using a multi-enzyme system. Bioprocess and biosystems engineering, (2015): 38(4), 671-680.

Morthensen, S. T., Zeuner, B., Meyer, A. S., Jørgensen, H., & Pinelo, M. Membrane separation of enzyme-converted biomass compounds: Recovery of xylose and production of gluconic acid as a value-added product. Separation and Purification Technology, (2018): 194, 73-80.

Chia, M., Van Nguyen, T. B., & Choi, W. J. DO-stat fed-batch production of 2-keto-D-gluconic acid from cassava using immobilized Pseudomonas aeruginosa. Applied microbiology and biotechnology, (2008):78(5), 759-765.

Buzzini, P., Gobbetti, M., Rossi, J., & Ribaldi, M. Utilization of grape must and concentrated rectified grape must to produce gluconic acid by Aspergillus niger, in batch fermentations. Biotechnology Letters, (1993):15(2), 151-156.

Sun W. Two-stage Semi-continuous 2-Keto-Gluconic Acid (2KGA) Production by Pseudomonas plecoglossicida JUIM01 from Rice Starch Hydrolysate. Frontiers in Bioengineering and Biotechnology. 2020;8:120.

Glaser, J. A. (2005). White biotechnology.

Meshitsuka, G., & Isogai, A. Chemical structures of cellulose, hemicelluloses, and lignin. In Chemical modification of lignocellulosic materials (2017): (pp. 11-33). Routledge.

Jiang, Y., Liu, K., Zhang, H., Wang, Y., Yuan, Q., Su, N., & Fang, X. Gluconic acid production from potato waste by Gluconobacter oxidans using sequential hydrolysis and fermentation. ACS Sustainable Chemistry & Engineering, (2017): 5(7), 6116-6123.

Singh, O. V., & Singh, R. P. Bioconversion of grape must into modulated gluconic acid production by Aspergillus niger ORS‐4• 410. Journal of applied microbiology, (2006): 100(5), 1114-1122.

Singh, Om Vir, and R. P. Singh. "Utilization of agro-food by-products for gluconic acid production by Aspergillus niger ORS-4 under surface culture cultivation." (2002).

.Rao, D. S., & Panda, T. Critical analysis of the effect of metal ions on gluconic acid production by Aspergillus niger using a treated Indian cane molasses. Bioprocess Engineering, (1994): 10(2), 99-107.

Banerjee, S., Kumar, R., & Pal, P. Fermentative production of gluconic acid: a membrane-integrated Green process. Journal of the Taiwan Institute of Chemical Engineers, (2018): 84, 76-84.

Lu, F., Ping, K., Wen, L., Zhao, W., Wang, Z., Chu, J., & Zhuang, Y. Enhancing gluconic acid production by controlling the morphology of Aspergillus niger in submerged fermentation. Process Biochemistry, (2015):50(9), 1342-1348.

Wang, D., Wang, C., Wei, D., Shi, J., Kim, C. H., Jiang, B., & Hao, J. Gluconic acid production by gad mutant of Klebsiella pneumoniae. World Journal of Microbiology and Biotechnology, (2016):32(8), 132.

Liggett, R. W., & Koffler, H. Corn steep liquor in microbiology. Bacteriological reviews, (1948):12(4), 297.

Anastassiadis, S., & Rehm, H. J. Continuous gluconic acid production by Aureobasidium pullulans with and without biomass retention. Electronic Journal of Biotechnology, (2006): 9(5), 0-0.

Anastassiadis, Savas, Svetlana V. Kamzolova, Igor G. Morgunov, and Hans-Jürgen Rehm. "The effect of iron on gluconic acid production by aureobasidium Pullulans." The Open Biotechnology Journal 2, no. 1 (2008).

Alonso, S., Rendueles, M., & Díaz, M. Simultaneous production of lactobionic and gluconic acid in cheese whey/glucose co-fermentation by Pseudomonas taetrolens. Bioresource technology, (2015): 196, 314-323.

Osunkanmibi, O. B., Owolabi, T. O., & Betiku, E. Comparison of artificial neural network and response surface methodology performance on fermentation parameters optimization of bioconversion of cashew apple juice to gluconic acid. International journal of food engineering, (2015): 11(3), 393-403.

Anyasi, T. A., Jideani, A. I. O., Edokpayi, J. N., & Anokwuru, C. P. Application of Organic Acids in food preservation. Organic Acids, Characteristics, Properties and Synthesis; Vargas, C., Ed, (2017): 1-47.

Revin, V., Liyaskina, E., Nazarkina, M., Bogatyreva, A., & Shchankin, M. Cost-effective production of bacterial cellulose using acidic food industry by-products. brazilian journal of microbiology, (2018): 49, 151-159.

Yegin, S., Saha, B. C., Kennedy, G. J., Berhow, M. A., & Vermillion, K. Efficient bioconversion of waste bread into 2-keto-d-gluconic acid by Pseudomonas reptilivora NRRL B-6. Biomass Conversion and Biorefinery, (2020): 1-9.

Kosaric N, Gray NC, Cairns WL. Introduction: Biotechnology and the surfactant industry. In Biosurfactants and Biotechnology 2017 Nov 22 (pp. 1-19). Routledge.

Vigentini, I., Fabrizio, V., Dellacà, F., Rossi, S., Azario, I., Mondin, C., ... & Foschino, R. Set-up of bacterial cellulose production from the genus Komagataeibacter and its use in a gluten-free bakery product as a case study. Frontiers in microbiology, (2019): 10, 1953.

Ramzi, A. A., K. Z. Zjeh, R. A. Malek, J. K. Abdullah, A. El Baz, N. El Deeb, D. Dailin, S. Z. Hanapi, D. Sukmawati, and H. El Enshasy. "Bioprocess optimization for exopolysaccharides production by Ganoderma lucidum in semi-industrial scale." Recent Patents on Food, Nutrition & Agriculture (2020). https://doi.org/10.2174/2212798411666200316153148

Singh, P., & Kumar, S. Microbial Enzyme in Food Biotechnology. In Enzymes in Food Biotechnology (2019): (pp. 19-28). Academic Press.

Zhou, X., Hua, X., Huang, L., & Xu, Y. Bio-utilization of cheese manufacturing wastes (cheese whey powder) for bioethanol and specific product (galactonic acid) production via a two-step bioprocess. Bioresource technology, (2019):272, 70-76.

Fellows, P. J. Food processing technology: principles and practice. Elsevier. (2009).

Stanga, M. (2010). Sanitation: cleaning and disinfection in the food industry. John Wiley & Sons.

Gallo, Monica, Lydia Ferrara, Armando Calogero, Domenico Montesano, and Daniele Naviglio. "Relationships between food and diseases: what to know to ensure food safety." Food Research International (2020): 109414.

Tian, X., Shen, Y., Zhuang, Y., Zhao, W., Hang, H., & Chu, J. Kinetic analysis of sodium gluconate production by Aspergillus niger with different inlet oxygen concentrations. Bioprocess and biosystems engineering, (2018):41(11), 1697-1706.

Akal, C., Turkmen, N., & Özer, B. Technology of dairy-based beverages. In Milk-Based Beverages (2019):(pp. 331-372). Woodhead Publishing.

Pamuk, V., Yılmaz, M., & Alıcılar, A. The preparation of D‐glucaric acid by oxidation of molasses in packed beds. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, (2001):76(2), 186-190.

Ayed, L., & Hamdi, M. Manufacture of a beverage from cactus pear juice using “tea fungus” fermentation. Annals of microbiology, (2015):65(4), 2293-2299.

Zhao, F., Li, H., Jiang, Y., Wang, X., & Mu, X. Co-immobilization of multi-enzyme on control-reduced graphene oxide by non-covalent bonds: an artificial biocatalytic system for the one-pot production of gluconic acid from starch. Green Chemistry, (2014): 16(5), 2558-2565.

Roukas, T. Citric and gluconic acid production from fig by Aspergillus niger using solid-state fermentation. Journal of Industrial Microbiology and Biotechnology, (2000): 25(6), 298-304.

Ford, C. M. The biochemistry of organic acids in the grape. Biochem Grape Berr, (2012): 22, 67-88.

.Deng, W., Wang, Y., & Yan, N. Production of organic acids from biomass resources. Current Opinion in Green and Sustainable Chemistry, (2016): 2, 54-58.

Zhang, S., Winestrand, S., Chen, L., Li, D., Jönsson, L. J., & Hong, F. Tolerance of the nanocellulose-producing bacterium Gluconacetobacter xylinus to lignocellulose-derived acids and aldehydes. Journal of agricultural and food chemistry, (2014):62(40), 9792-9799.

Singh, O. V., Kapur, N., & Singh, R. P. Evaluation of agro-food byproducts for gluconic acid production by Aspergillus niger ORS-4.410. World Journal of Microbiology and Biotechnology, (2005): 21(4), 519-524.

Singh, O. V., & Singh, R. P. Utilization of agro-food by-products for gluconic acid production by Aspergillus niger ORS-4 under surface culture cultivation, (2002).

Ordóñez, J. L., Cañete‐Rodríguez, A. M., Callejón, R. M., Santos‐Dueñas, M. I., Troncoso, A. M., García‐García, I., & García‐Parrilla, M. C. Effect of Gluconic Acid Submerged Fermentation of Strawberry Purée on Amino Acids and Biogenic Amines Profile. Journal of Food Processing and Preservation, (2017): 41(2), e12787.

Ikeda, Y., Park, E. Y., & Okuda, N. Bioconversion of waste office paper to gluconic acid in a turbine blade reactor by the filamentous fungus Aspergillus niger. Bioresource Technology, (2006):97(8), 1030-1035.

Alonso, S., Rendueles, M., & Díaz, M. Simultaneous production of lactobionic and gluconic acid in cheese whey/glucose co-fermentation by Pseudomonas taetrolens. Bioresource technology, (2015):196, 314-323.

Singh, O. V., Kapur, N., & Singh, R. P. Evaluation of agro-food byproducts for gluconic acid production by Aspergillus niger ORS-4.410. World Journal of Microbiology and Biotechnology, (2005):21(4), 519-524.

Mariappan, S., & Shrivastava, P. Gluconic Acid Production from Potato Peel Wastes by Oxidation Using Silver (I) Ion. International Journal of Engineering & Technology, (2018): 7(3.36), 48-51.

Mao, Y. M. Preparation of gluconic acid by oxidation of glucose with hydrogen peroxide. Journal of Food Processing and Preservation, (2017):41(1), e12742.

Wang, D. M., Sun, L., Sun, W. J., Cui, F. J., Gong, J. S., Zhang, X. M., ... & Xu, Z. H. A membrane-bound gluconate dehydrogenase from 2-keto-D-gluconic acid industrial producing strain Pseudomonas plecoglossicida JUIM01: purification, characterization, and gene identification. Applied biochemistry and biotechnology, (2019): 188(4), 897-913.

Alonso, S., Rendueles, M., & Díaz, M. Simultaneous production of lactobionic and gluconic acid in cheese whey/glucose co-fermentation by Pseudomonas taetrolens. Bioresource technology, (2015): 196, 314-323.

Chia, M., Van Nguyen, T. B., & Choi, W. J. DO-stat fed-batch production of 2-keto-D-gluconic acid from cassava using immobilized Pseudomonas aeruginosa. Applied microbiology and biotechnology, (2008):78(5), 759-765.

Ciriminna, R., Meneguzzo, F., Delisi, R., & Pagliaro, M. Citric acid: emerging applications of key biotechnology industrial product. Chemistry Central Journal, (2017): 11(1), 22.

Vinderola, G., Ouwehand, A., Salminen, S., & von Wright, A. (Eds.). Lactic acid bacteria: microbiological and functional aspects. Crc Press, (2019).

Abd Alsaheb, R.A., Abdullah, J.K., Dailin, D.J., Abd Malek, R. and El Enshasy, H., Bioprocess And Medium Optimization For Glutamic Acid Production Using Submerged Fermentation In Shake Flask And Bioreactor. "INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH. 2020: 9(3), 6787–6791.

Sodium Gluconate, Gluconic Acid, and Derivative Products from China and France (2018) Investigation Nos. 701-TA-590 and 731-TA-1397-98 (Preliminary).

Mao, Y. M. Preparation of gluconic acid by oxidation of glucose with hydrogen peroxide. Journal of Food Processing and Preservation, (2017): 41(1), e12742.

Gluconic Acid Market Size By Application (Industrial [Agrochemical & fertilizers, Metal surface treatment, Textile], Beverages, Food [Confectionary, Dairy, Flavors, Instant food, Meat, Sauces & Dressings], Pharmaceutical, Personal care, Cleaners & Detergents), By Downstream Potential (Sodium Gluconate, Calcium Gluconate, Potassium Gluconate, Glucono Delta-Lactone, Industry Analysis Report, Regional Outlook, Application Potential, Price Trend, Competitive Market Share & Forecast, 2018 – 2024.

Market, A. Global Industry Analysis, Size, Share, Growth, Trends and Forecast 2016–2024. URL: https://www. Transparency market research. com/logistics-market. html (2018): (Last accessed: 16.01. 2018).


Refbacks

  • There are currently no refbacks.