Open Access Open Access  Restricted Access Subscription or Fee Access

Post-combustion CO2 capture by using chemical absorption process: Brief Review

S. K. Nanwatkar, Priyanka Chawhan, R. K. Nanwatkar, J. K. Shinde

Abstract


CO2 concentration on a global scale is increasing rapidly day by day, and it highly effects on the environment. CO2 mitigation strategies such as CCUS (Carbon capture utilization and storage) proved to be an efficient technology to combat the global warming issue. The three technologies commercially deployed for Industrial CO2 capture can be classified as 1. post-combustion process, 2. pre-combustion process, also 3. Oxy-fuel process. Post-combustion capture process has some benefits over the other technologies as it is a better retrofit to the already existing combustion process. The main aim of this paper is to describe the post-combustion capture with the absorption process. And also discussed simulation & modelling of the experimental performance on the pilot plant. Based on this application, different solvents and PI techniques of blended amine are also discussed to improve efficiency


Full Text:

PDF

References


Aroonwilas, A., & Veawab, A. (2007). Integration of CO2 capture unit using single-and blended-amines into supercritical coal-fired power plants: Implications for emission and energy management. International Journal of Greenhouse Gas Control, 1(2), 143-150.

Bi, Y., & Ju, Y. (2022). Review on cryogenic technologies for CO2 removal from natural gas. Frontiers in Energy, 1-19.

Booth, N. (2005). Secondment to the International Test Centre for CO {sub 2} capture (ITC), University of Regina, Canada; January-March 2005.

Buckingham, J., Reina, T. R., & Duyar, M. S. (2022). Recent advances in carbon dioxide capture for process intensification. Carbon-Capture Science & Technology, 100031.

Chakravarti, S., Gupta, A., & Hunek, B. (2001). Advanced technology for the capture of carbon dioxide from flue gases. Paper presented at the First National Conference on Carbon Sequestration, Washington, DC.

Cheng, H.-H., & Tan, C.-S. (2009). Carbon dioxide capture by blended alkanolamines in rotating packed bed. Energy Procedia, 1(1), 925-932.

Ciferno, J. P., Lang, D., & Rochelle, G. (2010). Carbon Dioxide Capture by Absorption with Potassium Carbonate. University of Texas.

Cullinane, J. T., & Rochelle, G. T. (2005). Thermodynamics of aqueous potassium carbonate, piperazine, and carbon dioxide. Fluid Phase Equilibria, 227(2), 197-213.

Darde, V., Thomsen, K., van Well, W. J., & Stenby, E. H. (2009). Chilled ammonia process for CO2 capture. Energy Procedia, 1(1), 1035-1042.

Dash, S. K., Parikh, R., & Kaul, D. (2022). Development of efficient absorbent for CO2 capture

process based on (AMP+ 1MPZ). Materials Today: Proceedings.

Davison, J. (2007). Performance and costs of power plants with capture and storage of CO2.

Energy, 32(7), 1163-1176.

Dey, A., Dash, S. K., & Mandal, B. (2022). Introduction to Carbon-Capture. In Emerging

Carbon-Capture Technologies (pp. 1-31): Elsevier.

Dey, A., Saini, B., Balchandani, S. C., & Dash, S. K. (2022). Investigation of equilibrium CO2 solubility in 35 wt% aqueous 1-(2-aminoethyl) piperazine (AEP) and performance study over monoethanolamine for CO2 absorption. Materials Today: Proceedings.

Dugas, R. (2006). Pilot Plant Study of Carbon Dioxide Capture by Aqueous Monoethylamine. Master thesis of Chemical Engineering. Austin: University of Texas,

Dugas, R., Alix, P., Lemaire, E., Broutin, P., & Rochelle, G. (2009). Absorber model for CO2 capture by monoethanolamine—application to CASTOR pilot results. Energy Procedia, 1(1), 103-107.

Freund, P. (2003). Making deep reductions in CO2 emissions from coal-fired power plant using capture and storage of CO2. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 217(1), 1-7.

Herzog, T. (2009). World greenhouse gas emissions in 2005. World Resources Institute, 7,2009.

Kittel, J., Idem, R., Gelowitz, D., Tontiwachwuthikul, P., Parrain, G., & Bonneau, A. (2009). Corrosion in MEA units for CO2 capture: pilot plant studies. Energy Procedia, 1(1), 791-797.

Kvamsdal, H. M., Jakobsen, J. P., & Hoff, K. A. (2009). Dynamic modeling and simulation of a CO2 absorber column for post-combustion CO2 capture. Chemical Engineering and Processing: Process Intensification, 48(1), 135-144.

Lawal, A., Wang, M., Stephenson, P., & Yeung, H. (2009). Dynamic modelling of CO2 absorption for post combustion capture in coal-fired power plants. Fuel, 88(12), 2455-2462.

Luo, Q., Zhou, Q., Feng, B., Li, N., & Liu, S. (2022). A Combined Experimental and Computational Study on the Shuttle Mechanism of Piperazine for the Enhanced CO₂ Absorption in Aqueous Piperazine Blends.

Metz, B., Davidson, O., De Coninck, H., Loos, M., & Meyer, L. (2005). IPCC special report on carbon dioxide capture and storage: Cambridge: Cambridge University Press.

Noeres, C., Kenig, E., & Górak, A. (2003). Modelling of reactive separation processes: reactive absorption and reactive distillation. Chemical Engineering and Processing: Process

Intensification, 42(3), 157-178.

Pedersen, J. S. T., Santos, F. D., van Vuuren, D., Gupta, J., Coelho, R. E., Aparício, B. A., & Swart, R. (2021). An assessment of the performance of scenarios against historical global emissions

for IPCC reports. Global Environmental Change, 66, 102199.

Rao, A. B., & Rubin, E. S. (2002). A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control. Environmental science & technology, 36(20), 4467-4475.

Sexton, A. J., & Rochelle, G. T. (2009). Catalysts and inhibitors for MEA oxidation. Energy Procedia, 1(1), 1179-1185.

Srivastava, B., & Reddy, P. THE CONSPIRACY OF IPCC ON CLIMATE CHANGE.

Tanneberger, F., Abel, S., Couwenberg, J., Dahms, T., Gaudig, G., Günther, A., . . . Joosten, H. (2021). Towards net zero CO2 in 2050: An emission reduction pathway for organic soils in Germany. Mires and Peat, 27.

Vaidya, P. D., & Kenig, E. Y. (2007). CO2-alkanolamine reaction kinetics: a review of recent studies. Chemical Engineering & Technology: Industrial Chemistry-Plant Equipment-Process

Engineering-Biotechnology, 30(11), 1467-1474.

Vega, F., Baena-Moreno, F., Fernandez, L. M. G., Portillo, E., Navarrete, B., & Zhang, Z. (2020). Current status of CO2 chemical absorption research applied to CCS: Towards full deployment

at industrial scale. Applied Energy, 260, 114313.

Wang, M., Lawal, A., Stephenson, P., Sidders, J., & Ramshaw, C. (2011). Post-combustion CO2 capture with chemical absorption: A state-of-the-art review. Chemical engineering research and design, 89(9), 1609-1624.

Zhang, H., Wang, B., Xiong, M., Gao, C., Ren, H., & Ma, L. (2022). Process intensification in gas-liquid mass transfer by nanofluids: Mechanism and current status. Journal of Molecular

Liquids, 346, 118268.

Zhang, Y., Chen, H., Chen, C.-C., Plaza, J. M., Dugas, R., & Rochelle, G. T. (2009). Rate-based process modeling study of CO2 capture with aqueous monoethanolamine solution. Industrial

& engineering chemistry research, 48(20), 9233-9246.

Zhao, Z., Cui, X., Ma, J., & Li, R. (2007). Adsorption of carbon dioxide on alkali-modified zeolite 13X adsorbents. International Journal of Greenhouse Gas Control, 1(3), 355-359.

Ziaii, S., Rochelle, G. T., & Edgar, T. F. (2009). Dynamic modeling to minimize energy use for CO2 capture in power plants by aqueous monoethanolamine. Industrial & engineering

chemistry research, 48(13), 6105-6111.


Refbacks

  • There are currently no refbacks.