Open Access Open Access  Restricted Access Subscription or Fee Access

Evolution of Cancer Biomarker and its Therapeutic Drug

Migmar Tsamchoe, Tenzin Kungyal

Abstract


The trend to develop personalized medicine in targeting the defective genes/proteins and its pathways have become a promising approach with a significant success rate seen so far. The causes of cancer vary from person to person. Mutation in a cancer-associated gene or causative gene such as EGFR, VEGF, mTOR etc will cause cancer and later metastasis but treatment has to be given by identifying the specific marker and targeting the defective protein. There are lots of drugs for cancer which is inhibiting the mutated kinases, oncogene and the most recent approach being the anticancer immunotherapy which has so far have least side effect and success in overall survival had let to undying search for novel drugs for the treatment of cancer. Therefore in this review, we have discussed the evolvement of cancer therapeutics targets, biomarkers, drugs which had helped in increasing overall survival rate.


Keywords: Metastasis, angiogenesis, kinase inhibitor, immunotherapy, VEGF

Cite this Article
Migmar Tsamchoe, Tenzin Kungyal. Evolution of Cancer Biomarker and its Therapeutic Drug. Research & Reviews: A Journal of Life Sciences. 2019; 9(3): 15–27p.


Full Text:

PDF

References


Thompson EW, Newgreen DF. Carcinoma invasion and metastasis: a role for epithelial-mesenchymal transition? Cancer Res. AACR; 2005;65(14):5991–5.

Gilles C, Thompson EW. The epithelial to mesenchymal transition and metastatic progression in carcinoma. Breast J. Wiley Online Library; 1996;2(1):83–96.

Zajchowski DA, Bartholdi MF, Gong Y, Webster L, Liu H-L, Munishkin A, et al. Identification of gene expression profiles that predict the aggressive behavior of breast cancer cells. Cancer Res. AACR; 2001;61(13):5168–78.

Xue C, Plieth D, Venkov C, Xu C, Neilson EG. The gatekeeper effect of epithelial-mesenchymal transition regulates the frequency of breast cancer metastasis. Cancer Res. AACR; 2003;63(12):3386–94.

Gilles C, POLETTE M, Piette J, DELVIGNE A, Thompson EW, FOIDART J, et al. Vimentin expression in cervical carcinomas: association with invasive and migratory potential. J Pathol. Wiley Online Library; 1996;180(2):175–80.

Hubbard SR, Miller WT. Receptor tyrosine kinases: mechanisms of activation and signaling. Curr Opin Cell Biol. Elsevier; 2007;19(2):117–23.

Blume-Jensen P, Hunter T. Oncogenic kinase signalling. Nature. Nature Publishing Group; 2001;411(6835):355.

Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. Mass Medical Soc; 1971;285(21):1182–6.

Apte RS, Chen DS, Ferrara N. VEGF in Signaling and Disease: Beyond Discovery and Development. Cell. Elsevier; 2019;176(6):1248–64.

Ferrara N. Vascular endothelial growth factor and age-related macular degeneration: from basic science to therapy. Nat Med. Nature Publishing Group; 2010;16(10):1107.

Kerbel RS. Molecular origins of cancer. Tumor Angiogenes N Engl J Med. 2008;358:2039–49.

Fong G-H, Rossant J, Gertsenstein M, Breitman ML. Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature. Nature Publishing Group; 1995;376(6535):66.

Shalaby F, Rossant J, Yamaguchi TP, Gertsenstein M, Wu X-F, Breitman ML, et al. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature. Nature Publishing Group; 1995;376(6535):62.

Maynard SE, Min J-Y, Merchan J, Lim K-H, Li J, Mondal S, et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest. Am Soc Clin Investig; 2003;111(5):649–58.

Kendall RL, Thomas KA. Inhibition of vascular endothelial cell growth factor activity by an endogenously encoded soluble receptor. Proc Natl Acad Sci. National Acad Sciences; 1993;90(22):10705–9.

Tsatsaris V, Goffin F, Munaut C, Brichant J-F, Pignon M-R, Noel A, et al. Overexpression of the soluble vascular endothelial growth factor receptor in preeclamptic patients: pathophysiological consequences. J Clin Endocrinol Metab. Oxford University Press; 2003;88(11):5555–63.

Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS, et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature. Nature Publishing Group; 1993;362(6423):841.

Borgström P, Hillan KJ, Sriramarao P, Ferrara N. Complete inhibition of angiogenesis and growth of microtumors by anti-vascular endothelial growth factor neutralizing antibody: novel concepts of angiostatic therapy from intravital videomicroscopy. Cancer Res. AACR; 1996;56(17):4032–9.

Presta LG, Chen H, O’connor SJ, Chisholm V, Meng YG, Krummen L, et al. Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Res. AACR; 1997;57(20):4593–9.

Ferrara N, Hillan KJ, Gerber H-P, Novotny W. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov. Nature Publishing Group; 2004;3(5):391.

Willett CG, Boucher Y, Di Tomaso E, Duda DG, Munn LL, Tong RT, et al. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med. Nature Publishing Group; 2004;10(2):145.

Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med. Mass Medical Soc; 2004;350(23):2335–42.

Saltz LB, Clarke S, Díaz-Rubio E, Scheithauer W, Figer A, Wong R, et al. Bevacizumab in combination with oxaliplatin-based chemotherapy as first-line therapy in metastatic colorectal cancer: a randomized phase III study. J Clin Oncol. New York, NY: Grune & Stratton, c1983-; 2008;26(12):2013–9.

De Placido S, De Laurentiis M, Bruzzese D, Bernardo A, Baldini EE, Montesarchio V, et al. Abstract P6-21-13: A phase II single arm trial evaluating the efficacy and safety of eribulin in combination with bevacizumab for second-line treatment of human epidermal growth factor receptor 2 (HER2)–negative metastatic breast cancer (MBC) progressing after first-line therapy with bevacizumab and paclitaxel. AACR; 2019.

Komiyama S, Nagashima M, Taniguchi T, Rikitake T, Morita M. Bevacizumab Plus Direct Oral Anticoagulant Therapy in Ovarian Cancer Patients with Distal Deep Vein Thrombosis. Clin Drug Investig. Springer; 2019;1–6.

Bamias A, Karavasilis V, Gavalas N, Tzannis K, Samantas E, Aravantinos G, et al. The combination of bevacizumab/temsirolimus after first-line anti-VEGF therapy in advanced renal-cell carcinoma: a clinical and biomarker study. Int J Clin Oncol. Springer; 2018;1–9.

Khella HWZ, Butz H, Ding Q, Rotondo F, Evans KR, Kupchak P, et al. miR-221/222 are involved in response to sunitinib treatment in metastatic renal cell carcinoma. Mol Ther. Elsevier; 2015;23(11):1748–58.

Osusky KL, Hallahan DE, Fu A, Ye F, Shyr Y, Geng L. The receptor tyrosine kinase inhibitor SU11248 impedes endothelial cell migration, tubule formation, and blood vessel formation in vivo, but has little effect on existing tumor vessels. Angiogenesis. Springer; 2004;7(3):225–33.

Schueneman AJ, Himmelfarb E, Geng L, Tan J, Donnelly E, Mendel D, et al. SU11248 maintenance therapy prevents tumor regrowth after fractionated irradiation of murine tumor models. Cancer Res. AACR; 2003;63(14):4009–16.

Lee‐Ying R, Lester R, Heng DYC. Current management and future perspectives of metastatic renal cell carcinoma. Int J Urol. Wiley Online Library; 2014;21(9):847–55.

Demetri GD, van Oosterom AT, Garrett CR, Blackstein ME, Shah MH, Verweij J, et al. Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial. Lancet. Elsevier; 2006;368(9544):1329–38.

Wilhelm SM, Carter C, Tang L, Wilkie D, McNabola A, Rong H, et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. AACR; 2004;64(19):7099–109.

Chang YS, Adnane J, Trail PA, Levy J, Henderson A, Xue D, et al. Sorafenib (BAY 43-9006) inhibits tumor growth and vascularization and induces tumor apoptosis and hypoxia in RCC xenograft models. Cancer Chemother Pharmacol. Springer; 2007;59(5):561–74.

Liu L, Cao Y, Chen C, Zhang X, McNabola A, Wilkie D, et al. Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res. AACR; 2006;66(24):11851–8.

Ciardiello F, Tortora G. A novel approach in the treatment of cancer: targeting the epidermal growth factor receptor. Clin Cancer Res. AACR; 2001;7(10):2958–70.

Mendelsohn J, Baselga J. The EGF receptor family as targets for cancer therapy. Oncogene. Nature Publishing Group; 2000;19(56):6550.

Hoag JB, Azizi A, Doherty TJ, Lu J, Willis RE, Lund ME. Association of cetuximab with adverse pulmonary events in cancer patients: a comprehensive review. J Exp Clin Cancer Res. BioMed Central; 2009;28(1):113.

Mascia F, Mariani V, Girolomoni G, Pastore S. Blockade of the EGF receptor induces a deranged chemokine expression in keratinocytes leading to enhanced skin inflammation. Am J Pathol. Elsevier; 2003;163(1):303–12.

Kris MG, Natale RB, Herbst RS, Lynch Jr TJ, Prager D, Belani CP, et al. Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non–small cell lung cancer: a randomized trial. Jama. American Medical Association; 2003;290(16):2149–58.

Riely GJ, Pao W, Pham D, Li AR, Rizvi N, Venkatraman ES, et al. Clinical course of patients with non–small cell lung cancer and epidermal growth factor receptor exon 19 and exon 21 mutations treated with gefitinib or erlotinib. Clin cancer Res. AACR; 2006;12(3):839–44.

Pao W, Miller VA, Politi KA, Riely GJ, Somwar R, Zakowski MF, et al. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med. Public Library of Science; 2005;2(3):e73.

Zheng X, Zhang G, Li P, Zhang M, Yan X, Zhang X, et al. Mutation Tracking of a Patient with EGFR-Mutant Lung Cancer Harboring De Novo MET Amplification: Successful Treatment with Gefitinib and Crizotinib. Lung Cancer. Elsevier; 2019;

Saltz LB, Meropol NJ, Loehrer Sr PJ, Needle MN, Kopit J, Mayer RJ. Phase II trial of cetuximab in patients with refractory colorectal cancer that expresses the epidermal growth factor receptor. J Clin Oncol. American Society of Clinical Oncology; 2004;22(7):1201–8.

Chung KY, Shia J, Kemeny NE, Shah M, Schwartz GK, Tse A, et al. Cetuximab shows activity in colorectal cancer patients with tumors that do not express the epidermal growth factor receptor by immunohistochemistry. J Clin Oncol. American Society of Clinical Oncology; 2005;23(9):1803–10.

Hynes NE, Lane HA. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer. Nature publishing group; 2005;5(5):341.

Cunningham D, Humblet Y, Siena S, Khayat D, Bleiberg H, Santoro A, et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med. Mass Medical Soc; 2004;351(4):337–45.

Bonner JA, Harari PM, Giralt J, Azarnia N, Shin DM, Cohen RB, et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med. Mass Medical Soc; 2006;354(6):567–78.

Zhou Q, Miller SE, van den Berg NS, Lu G, Vogel H, Cayrol R, et al. fluorescence-guided surgery with panitumumab-IRDye800 and cetuximab-IRDye800 in glioblastoma patients (Conference Presentation). In: Molecular-Guided Surgery: Molecules, Devices, and Applications V. International Society for Optics and Photonics; 2019. p. 108620Y.

Hayashi K, Mitani S, Taniguchi H, Yasui H, Muro K, Mori K, et al. Panitumumab Provides Better Survival Outcomes Compared to Cetuximab for Metastatic Colorectal Cancer Patients Treated with Prior Bevacizumab within 6 Months. Oncology. Karger Publishers; 2019;96(3):132–9.

Hashmi AA, Mahboob R, Khan SM, Irfan M, Nisar M, Iftikhar N, et al. Clinical and prognostic profile of Her2neu positive (non-luminal) intrinsic breast cancer subtype: comparison with Her2neu positive luminal breast cancers. BMC Res Notes. BioMed Central; 2018;11(1):574.

Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science (80- ). American Association for the Advancement of Science; 1987;235(4785):177–82.

Nahta R, Esteva FJ. HER-2-targeted therapy: lessons learned and future directions. Clin Cancer Res. AACR; 2003;9(14):5078–84.

Nielsen DL, Andersson M, Kamby C. HER2-targeted therapy in breast cancer. Monoclonal antibodies and tyrosine kinase inhibitors. Cancer Treat Rev. Elsevier; 2009;35(2):121–36.

Vogel CL, Cobleigh MA, Tripathy D, Gutheil JC, Harris LN, Fehrenbacher L, et al. Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol. American Society of Clinical Oncology; 2002;20(3):719–26.

Cobleigh MA, Vogel CL, Tripathy D, Robert NJ, Scholl S, Fehrenbacher L, et al. Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol. Citeseer; 1999;17(9):2639.

Nahta R, Yu D, Hung M-C, Hortobagyi GN, Esteva FJ. Mechanisms of disease: understanding resistance to HER2-targeted therapy in human breast cancer. Nat Rev Clin Oncol. Nature Publishing Group; 2006;3(5):269.

Moy B, Kirkpatrick P, Kar S, Goss P. Lapatinib. Nature Publishing Group; 2007.

Baselga J, Bradbury I, Eidtmann H, Di Cosimo S, De Azambuja E, Aura C, et al. Lapatinib with trastuzumab for HER2-positive early breast cancer (NeoALTTO): a randomised, open-label, multicentre, phase 3 trial. Lancet. Elsevier; 2012;379(9816):633–40.

Blackwell KL, Burstein HJ, Storniolo AM, Rugo H, Sledge G, Koehler M, et al. Randomized study of Lapatinib alone or in combination with trastuzumab in women with ErbB2-positive, trastuzumab-refractory metastatic breast cancer. J Clin Oncol. American Society of Clinical Oncology; 2010;28(7):1124–30.

Rusnak DW, Alligood KJ, Mullin RJ, Spehar GM, Arenas‐Elliott C, Martin A, et al. Assessment of epidermal growth factor receptor (EGFR, ErbB1) and HER2 (ErbB2) protein expression levels and response to lapatinib (Tykerb®, GW572016) in an expanded panel of human normal and tumour cell lines. Cell Prolif. Wiley Online Library; 2007;40(4):580–94.

Baker H, Sidorowicz A, Sehgal SN, VÉZINA C. Rapamycin (AY-22, 989), a new antifungal antibiotic. J Antibiot (Tokyo). Japan Antibiotics Research Association; 1978;31(6):539–45.

Eng CP, Sehgal SN, Vézina C. Activity of rapamycin (AY-22, 989) against transplanted tumors. J Antibiot (Tokyo). Japan Antibiotics Research Association; 1984;37(10):1231–7.

Sehgal SN, Bansbach CC. Rapamycin: in vitro profile of a new immunosuppressive macrolide. Ann N Y Acad Sci. Wiley Online Library; 1993;685(1):58–67.

Sabatini DM, Erdjument-Bromage H, Lui M, Tempst P, Snyder SH. RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell. Elsevier; 1994;78(1):35–43.

Chiu MI, Katz H, Berlin V. RAPT1, a mammalian homolog of yeast Tor, interacts with the FKBP12/rapamycin complex. Proc Natl Acad Sci. National Acad Sciences; 1994;91(26):12574–8.

Brown EJ, Albers MW, Shin TB, Keith CT, Lane WS, Schreiber SL. A mammalian protein targeted by G1-arresting rapamycin–receptor complex. Nature. Nature Publishing Group; 1994;369(6483):756.

Sabers CJ, Martin MM, Brunn GJ, Williams JM, Dumont FJ, Wiederrecht G, et al. Isolation of a protein target of the FKBP12-rapamycin complex in mammalian cells. J Biol Chem. ASBMB; 1995;270(2):815–22.

Kim J, Guan K-L. Amino acid signaling in TOR activation. Annu Rev Biochem. Annual Reviews; 2011;80:1001–32.

Jung CH, Jun CB, Ro S-H, Kim Y-M, Otto NM, Cao J, et al. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell. Am Soc Cell Biol; 2009;20(7):1992–2003.

Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, et al. Nutrient-dependent mTORC1 association with the ULK1–Atg13–FIP200 complex required for autophagy. Mol Biol Cell. Am Soc Cell Biol; 2009;20(7):1981–91.

Kim J, Kundu M, Viollet B, Guan K-L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. Nature Publishing Group; 2011;13(2):132.

Yuan H-X, Russell RC, Guan K-L. Regulation of PIK3C3/VPS34 complexes by MTOR in nutrient stress-induced autophagy. Autophagy. Taylor & Francis; 2013;9(12):1983–95.

Martina JA, Chen Y, Gucek M, Puertollano R. MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy. Taylor & Francis; 2012;8(6):903–14.

Settembre C, Zoncu R, Medina DL, Vetrini F, Erdin S, Erdin S, et al. A lysosome‐to‐nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J. EMBO Press; 2012;31(5):1095–108.

Peña‐Llopis S, Vega‐Rubin‐de‐Celis S, Schwartz JC, Wolff NC, Tran TAT, Zou L, et al. Regulation of TFEB and V‐ATPases by mTORC1. EMBO J. EMBO Press; 2011;30(16):3242–58.

Grabiner BC, Nardi V, Birsoy K, Possemato R, Shen K, Sinha S, et al. A diverse array of cancer-associated MTOR mutations are hyperactivating and can predict rapamycin sensitivity. Cancer Discov. AACR; 2014;4(5):554–63.

Nickerson ML, Warren MB, Toro JR, Matrosova V, Glenn G, Turner ML, et al. Mutations in a novel gene lead to kidney tumors, lung wall defects, and benign tumors of the hair follicle in patients with the Birt-Hogg-Dube syndrome. Cancer Cell. Elsevier; 2002;2(2):157–64.

Okosun J, Wolfson RL, Wang J, Araf S, Wilkins L, Castellano BM, et al. Recurrent mTORC1-activating RRAGC mutations in follicular lymphoma. Nat Genet. Nature Publishing Group; 2016;48(2):183.

Bar-Peled L, Chantranupong L, Cherniack AD, Chen WW, Ottina KA, Grabiner BC, et al. A Tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science (80- ). American Association for the Advancement of Science; 2013;340(6136):1100–6.

Hsieh AC, Liu Y, Edlind MP, Ingolia NT, Janes MR, Sher A, et al. The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature. Nature Publishing Group; 2012;485(7396):55.

Hsieh AC, Costa M, Zollo O, Davis C, Feldman ME, Testa JR, et al. Genetic dissection of the oncogenic mTOR pathway reveals druggable addiction to translational control via 4EBP-eIF4E. Cancer Cell. Elsevier; 2010;17(3):249–61.

Kim LC, Cook RS, Chen J. mTORC1 and mTORC2 in cancer and the tumor microenvironment. Oncogene. Nature Publishing Group; 2017;36(16):2191.

Saxton RA, Sabatini DM. mTOR signaling in growth, metabolism, and disease. Cell. Elsevier; 2017;168(6):960–76.

Benjamin D, Colombi M, Moroni C, Hall MN. Rapamycin passes the torch: a new generation of mTOR inhibitors. Nat Rev Drug Discov. Nature Publishing Group; 2011;10(11):868.

Fingar DC, Richardson CJ, Tee AR, Cheatham L, Tsou C, Blenis J. mTOR controls cell cycle progression through its cell growth effectors S6K1 and 4E-BP1/eukaryotic translation initiation factor 4E. Mol Cell Biol. Am Soc Microbiol; 2004;24(1):200–16.

Schmelzle T, Hall MN. TOR, a central controller of cell growth. Cell. Elsevier; 2000;103(2):253–62.

Skotnicki JS. Design, synthesis and biological evaluation of C-42 hydroxyesters of rapamycin: the identification of CCI-779. Clin Cancer Res. 2001;7:3749S–3750S.

Harding MW. Immunophilins, mTOR, and Pharmacodynamic Strategies for a Targeted Cancer Therapy: Commentary re: JM Peralba et al., Pharmacodynamic Evaluation of CCI-779, an Inhibitor of mTOR, in Cancer Patients. Clin. Cancer Res., 9: 2887–2892, 2003. Clin cancer Res. AACR; 2003;9(8):2882–6.

Bárdos JI, Ashcroft M. Hypoxia‐inducible factor‐1 and oncogenic signalling. Bioessays. Wiley Online Library; 2004;26(3):262–9.

Maroto P, Anguera G, Roldan-Romero JM, Apellániz-Ruiz M, Algaba F, Boonman J, et al. Biallelic TSC2 mutations in a patient with chromophobe renal cell carcinoma showing extraordinary response to temsirolimus. J Natl Compr Cancer Netw. Harborside Press, LLC; 2018;16(4):352–8.

Yao JC, Lombard-Bohas C, Baudin E, Kvols LK, Rougier P, Ruszniewski P, et al. Daily oral everolimus activity in patients with metastatic pancreatic neuroendocrine tumors after failure of cytotoxic chemotherapy: a phase II trial. J Clin Oncol. American Society of Clinical Oncology; 2010;28(1):69.

Yao JC, Shah MH, Ito T, Bohas CL, Wolin EM, Van Cutsem E, et al. Everolimus for advanced pancreatic neuroendocrine tumors. N Engl J Med. Mass Medical Soc; 2011;364(6):514–23.

Yao JC, Phan AT, Chang DZ, Wolff RA, Hess K, Gupta S, et al. Efficacy of RAD001 (everolimus) and octreotide LAR in advanced low-to intermediate-grade neuroendocrine tumors: results of a phase II study. J Clin Oncol. American Society of Clinical Oncology; 2008;26(26):4311.

Escors D. Tumour immunogenicity, antigen presentation, and immunological barriers in cancer immunotherapy. New J Sci. Hindawi; 2014;2014.

Cheever MA, Allison JP, Ferris AS, Finn OJ, Hastings BM, Hecht TT, et al. The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin cancer Res. AACR; 2009;15(17):5323–37.

Medzhitov R, Janeway CJ. Abstract. Immunol Rev. Wiley Online Library; 2000;173(1):89–97.

Huppa JB, Davis MM. T-cell-antigen recognition and the immunological synapse. Nat Rev Immunol. Nature Publishing Group; 2003;3(12):973.

Allison JP. CD28-B7 interactions in T-cell activation. Curr Opin Immunol. Elsevier; 1994;6(3):414–9.

June CH, Bluestone JA, Nadler LM, Thompson CB. The B7 and CD28 receptor families. Immunol Today. Elsevier; 1994;15(7):321–31.

Masopust D, Schenkel JM. The integration of T cell migration, differentiation and function. Nat Rev Immunol. Nature Publishing Group; 2013;13(5):309.

Drake CG, Jaffee E, Pardoll DM. Mechanisms of immune evasion by tumors. Adv Immunol. Elsevier; 2006;90:51–81.

Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. Annual Reviews; 2008;26:677–704.

Chen L. Co-inhibitory molecules of the B7–CD28 family in the control of T-cell immunity. Nat Rev Immunol. Nature Publishing Group; 2004;4(5):336.

Riella L V, Paterson AM, Sharpe AH, Chandraker A. Role of the PD‐1 Pathway in the Immune Response. Am J Transplant. Wiley Online Library; 2012;12(10):2575–87.

Zou W, Chen L. Inhibitory B7-family molecules in the tumour microenvironment. Nat Rev Immunol. Nature Publishing Group; 2008;8(6):467.

Zhang J, Wolfgang C, Zheng L. Precision immuno-oncology: prospects of individualized immunotherapy for pancreatic cancer. Cancers (Basel). Multidisciplinary Digital Publishing Institute; 2018;10(2):39.

Hamanishi J, Mandai M, Iwasaki M, Okazaki T, Tanaka Y, Yamaguchi K, et al. Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer. Proc Natl Acad Sci. National Acad Sciences; 2007;104(9):3360–5.

Hamid O, Carvajal RD. Anti-programmed death-1 and anti-programmed death-ligand 1 antibodies in cancer therapy. Expert Opin Biol Ther. Taylor & Francis; 2013;13(6):847–61.

Nurieva RI, Liu X, Dong C. Molecular mechanisms of T‐cell tolerance. Immunol Rev. Wiley Online Library; 2011;241(1):133–44.

Brahmer JR, Drake CG, Wollner I, Powderly JD, Picus J, Sharfman WH, et al. Phase I study of single-agent anti–programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol. American Society of Clinical Oncology; 2010;28(19):3167.

Cella D, Grünwald V, Escudier B, Hammers HJ, George S, Nathan P, et al. Patient-reported outcomes of patients with advanced renal cell carcinoma treated with nivolumab plus ipilimumab versus sunitinib (CheckMate 214): a randomised, phase 3 trial. Lancet Oncol. Elsevier; 2019;

Scherpereel A, Mazieres J, Greillier L, Lantuejoul S, Dô P, Bylicki O, et al. Nivolumab or nivolumab plus ipilimumab in patients with relapsed malignant pleural mesothelioma (IFCT-1501 MAPS2): a multicentre, open-label, randomised, non-comparative, phase 2 trial. Lancet Oncol. Elsevier; 2019;

Kazandjian D, Suzman DL, Blumenthal G, Mushti S, He K, Libeg M, et al. FDA approval summary: nivolumab for the treatment of metastatic non-small cell lung cancer with progression on or after platinum-based chemotherapy. Oncologist. AlphaMed Press; 2016;21(5):634–42.

Rizvi NA, Mazières J, Planchard D, Stinchcombe TE, Dy GK, Antonia SJ, et al. Activity and safety of nivolumab, an anti-PD-1 immune checkpoint inhibitor, for patients with advanced, refractory squamous non-small-cell lung cancer (CheckMate 063): a phase 2, single-arm trial. Lancet Oncol. Elsevier; 2015;16(3):257–65.

Carbone DP, Reck M, Paz-Ares L, Creelan B, Horn L, Steins M, et al. First-line nivolumab in stage IV or recurrent non–small-cell lung cancer. N Engl J Med. Mass Medical Soc; 2017;376(25):2415–26.

Kang Y-K, Satoh T, Ryu M-H, Chao Y, Kato K, Chung HC, et al. Nivolumab (ONO-4538/BMS-936558) as salvage treatment after second or later-line chemotherapy for advanced gastric or gastro-esophageal junction cancer (AGC): a double-blinded, randomized, phase III trial. American Society of Clinical Oncology; 2017.

Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. Science (80- ). American Association for the Advancement of Science; 1996;271(5256):1734–6.

Krummel MF, Allison JP. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med. Rockefeller University Press; 1995;182(2):459–65.

Robert C, Thomas L, Bondarenko I, O’day S, Weber J, Garbe C, et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med. Mass Medical Soc; 2011;364(26):2517–26.

Wolchok JD, Chiarion-Sileni V, Gonzalez R, Rutkowski P, Grob J-J, Cowey CL, et al. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med. Mass Medical Soc; 2017;377(14):1345–56.

Ready N, Hellmann MD, Awad MM, Otterson GA, Gutierrez M, Gainor JF, et al. First-Line Nivolumab Plus Ipilimumab in Advanced Non–Small-Cell Lung Cancer (CheckMate 568): Outcomes by Programmed Death Ligand 1 and Tumor Mutational Burden as Biomarkers. J Clin Oncol. American Society of Clinical Oncology; 2019;JCO-18.

Donnem T, Hu J, Ferguson M, Adighibe O, Snell C, Harris AL, et al. Vessel co‐option in primary human tumors and metastases: an obstacle to effective anti‐angiogenic treatment? Cancer Med. Wiley Online Library; 2013;2(4):427–36.

Miller KD, Chap LI, Holmes FA, Cobleigh MA, Marcom PK, Fehrenbacher L, et al. Randomized phase III trial of capecitabine compared with bevacizumab plus capecitabine in patients with previously treated metastatic breast cancer. J Clin Oncol. American Society of Clinical Oncology; 2005;23(4):792–9.

Miller K, Wang M, Gralow J, Dickler M, Cobleigh M, Perez EA, et al. Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med. Mass Medical Soc; 2007;357(26):2666–76.

Frentzas S, Simoneau E, Bridgeman VL, Vermeulen PB, Foo S, Kostaras E, et al. Vessel co-option mediates resistance to anti-angiogenic therapy in liver metastases. Nat Med. Nature Publishing Group; 2016;22(11):1294.

Brufsky AM, Hurvitz S, Perez E, Swamy R, Valero V, O’Neill V, et al. RIBBON-2: A randomized, double-blind, placebo-controlled, phase III trial evaluating the efficacy and safety of bevacizumab in combination with chemotherapy for second-line treatment of human epidermal growth factor receptor 2–negative metastatic breast cancer. J Clin Oncol. American Society of Clinical Oncology; 2011;29(32):4286–93.

Robert NJ, Diéras V, Glaspy J, Brufsky AM, Bondarenko I, Lipatov ON, et al. RIBBON-1: randomized, double-blind, placebo-controlled, phase III trial of chemotherapy with or without bevacizumab for first-line treatment of human epidermal growth factor receptor 2–negative, locally recurrent or metastatic breast cancer. J Clin Oncol. American Society of Clinical Oncology; 2011;29(10):1252–60.

Bonnans C, Chou J, Werb Z. Remodelling the extracellular matrix in development and disease. Nat Rev Mol cell Biol. Nature Publishing Group; 2014;15(12):786.

Ye Q, Xing Q, Ren Y, Harmsen MC, Bank RA. Endo180 and mt1-mmp are involved in the phagocytosis of collagen scaffolds by macrophages and is regulated by. 2010;20:197–209.

Madsen DH, Engelholm LH, Ingvarsen S, Hillig T, Wagenaar-Miller RA, Kjøller L, et al. Extracellular collagenases and the endocytic receptor, urokinase plasminogen activator receptor-associated protein/Endo180, cooperate in fibroblast-mediated collagen degradation. J Biol Chem. ASBMB; 2007;282(37):27037–45.

Lee H, Overall CM, Mcculloch CA, Sodek J. A Critical Role for the Membrane-type 1 Matrix Metalloproteinase in Collagen Phagocytosis □. 2006;17(November):4812–26.


Refbacks

  • There are currently no refbacks.