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Abstract 
In the hybrid quark model (HQM), when the distance between the two nucleons is greater than 

a certain cut off radius, they maintain their identity as nucleons but when the distances between 

the two baryons is smaller than a certain cut off radius, then the baryons overlap to form a six-

quark bag. The fact that the probability to find six-quark for 0r r  does not have to be the 

same as that of finding two nucleons for 0r r  can be accommodated either by allowing for a 

different normalization of the external wave function or by modifying the potential for 0r r . 

The mathematical framework for the evaluation of six-quark probability for nucleon-nucleon 

pair inside a nucleus or a hypernucleus from the shell model wave functions for the evaluation 

of matrix elements in the overlap probability has been compared.  
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INTRODUCTION 

The correct theory which describes the quark 

degrees of freedom in nucleons explicitly is 

quantum chromodynamics (QCD) [1,2], but 

this is very difficult. Despite great progress in 

its perturbative [3]and non-perturbative [4,5] 

aspects there are only two basic pieces of 

information available, first the quarks have the 

property of asymptotic freedom, that is when 

they are close together they do not interact, 

second quarks are confined, which means when 

the separation distance between quarks is large 

the interaction between them is strong and 

attractive. This means quark, gluon and any 

object carrying color are confined. Thus if one 

nucleon carrying quark, gluon and pions is to 

interact with another nucleon that is well 

separated from it, all terms save the exchanges 

of color singlets are prohibited by the 

confinement property. Since the pion is the 

lightest color singlet object formed from a 

quark and antiquark pair, one expects the 

exchange of single pion to dominate the long 

range NN interaction. One also expects 

considerable contribution from the exchange of 

two pions. Thus at large separation distances 

the conventional picture of mesonic exchanges 

is in agreement with the QCD, but for small 

separation between nucleons the quarks in one 

nucleon overlap with the quarks in the other 

nucleon and this should be treated as a system 

of confined quarks interacting via various 

perturbative terms of QCD. 

 

In order to bridge the gap between the short 

distance perturbative QCD region and the long 

range pion exchange force [6] developed a 

hybrid quark model which retains the 

conventional meson exchange picture at long 

distances and represents the effect of QCD at 

short distances. This model is based on the 

coordinate space representation of nuclear 

systems. There external regions in which 

separated baryons are represented as color 

singlets interaction through forces arising from 

the exchange of color singlet objects like pions. 

In the internal regions the quarks associated 

with two or more baryons interact with full 

color freedom. 

 

Thus in hybrid quark model, the nuclear matter 

has two phases. The nucleons are assumed to 

maintain their identity and properties as long as 

the distance between them is greater than a 

certain critical radius 0r and if distance between 

two nucleons is less than 0r  the system is 

treated as six-quarks. 

 

FORMALISM 

According to hybrid quark model (HQM) the 

two baryons overlap and form a six-quark bag 
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when the distance between them is smaller than 

a certain cut off radius 0r . Then the 

wavefunction for the six-quark system, with 

as other internal variables can be representedin 

the following equations, given by (Greben and 

Thomas, 1984) [7]. 

( ) ( ) ,..... 661 rrr =  0r r         (1)  

 

The six-quark probability can be defined as, 

( )
2

6 6 1 6 1 6..... ..........qP C r r dr dr=   (2) 

( )  rddrC 32

6
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Exact calculation of qP6 within the constraints 

of QCD in difficult to make in a model 

independent way, but qP6 can be related to the 

external NN wave functions under different 

approximations.The conservation of 

probability current across the boundary of 

matching radius at 0r r=  demands, 
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Integrating the current conservation equation 

[4] over  and r with 0r r , 

( ) ( )3 3

0 0 .d d r r r d d r r r j
dt


   


− = − −  

(6) 

 

Except for the time derivative, the left-hand 

side resembles qP6 . In the right-hand side the 

volume integral can be replaced by surface 

integral by the use of divergence theorem, so 

that the right-hand side of equation [6] depends 

on r.j. Now using the equation of continuity of 

current equation [5] the right-hand side of 

equation [6] can be expressed in terms of 

( )r12 . Thus a very difficult expression 

involving six-quarks can be expressed in terms 

of ordinary nucleonic wavefunction evaluated 

at the boundary 0r r= , using the probability 

current conservation and the equation of 

continuity. 

 

Since we are interested mostly with the state of 

the valence particle to form six-quark bag with 

the core particles only, the six-quark probability 

can be calculated from the shell model wave 

functions. Thus the probability of the valence 

particle being part of one of more six-quark 

bags with the core nucleons is, 

6 0 0q v v

Q N NP =   −     (7) 

 

The valence nucleon can overlap with more 

than one core nucleons simultaneously and in 

addition to six-quark bag can form nine-quark 

bag, twelve-quark bag etc., thus 
q

QP6
can be 

broken up as, 

...........666

21
++= q

Q

q

Q

q

Q PPP   (8) 

 

Where
q

QP6

1
 is the probability that the valence 

nucleon forms a six-quark bag with only one 

core nucleon, 
q

QP6

2
 refers to the probability that 

valence nucleon forms a nine-quark bag with 

any two of the core nucleons and so on [7]. 

Exact calculation of
q

QP6

1
,

q

QP6

2
etc., is possible 

only for three body case. For heavier nuclei, if 

only the lowest order terms in the expansion of 

correlation function ( )ijrr −0  are retained. 

The probability ( )0

6

1
rP q

Q  that the valence 

particle forms a six-quark bag with only one 

core nucleon is, 

( ) v

Q
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q
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Where;  
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Similarly the probability ( )0

6

2
rP q

Q  that the valence particle forms a nine-quark bag with any two of the 

core nucleons is  
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The quadratic higher order terms in the 

correlation function in ( )0

6

1
rP q

Q and ( )0

6

2
rP q

Q can 

be reduced to first order by using the following 
identity, 

( ) ( ) ( )0 0 0ij ij ijr r r r r r  − − = −
 (13)

 

 

Even then calculation of ( )0

6

1
rP q

Q and ( )0

6

2
rP q

Q

etc., for heavier nuclei becomes more and more 
difficult. If we assume that the chance for the 
valence particle to overlap with the core particle 
does not depends upon whether it already 
overlaps with other core particles, one can 

calculate ( )0

6

1
rP q

Q and ( )0

6

2
rP q

Q from the average 

probability ( )0

6 rP q

NN using the following 

expressions, 
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( )0

6 rP q

NN can be expressed as a combination of a 

direct term ( )0rpd

jln iii
 and an exchange term

( )0rpe

jln iii
 as, 

 

( ) ( ) ( ) ( )  −+=
iii

iiiiii

jln

e

jln

d

jlni

q

NN rprpjrP 000

6 212
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( )0rP
iiii tjln  can be interpreted as the probability 

for the valence particle to be within a distance 

0r  of a specified core particle with quantum 

numbers
iiii

tjln . The valence nucleon can also 

overlap with the hyperon and from a six-quark 

bag with the hyperon as ( )0

6 rP q

N .The overlap 

probability ( )0

6 rP q

NN and ( )0

6 rP q

N  can be 

estimated either by Moshinsky transformation 
method [8] or by Slater integral method [9].  
 
In the previous work given by Mehrotra, 
Mehrotra and Miller [10–12], following 
problems have been studied in the framework 
of hybrid quark model (HQM); 
a) The quark contribution to the binding 

energy difference of A=6, 14 mirror 
hypernuclei. 

b) The quark contribution to the magnetic 
moment of mirror nuclei with closed core + 
one nucleon. 

 

DISCUSSION  
If the six-quark plus NN wavefunction obey the 
same normalization condition as an ordinary 
NN wavefunctions, then the six-quark 
probability equals the probability defect of 

( )r12  for 0rr  . This is the simplest 

prescription for the six-quark probability. But 
care has to be exercised in choosing the 

wavefunction ( )r12 . First, because of the 

different strong dynamics for 0rr  , the 

probability to find six-quark with 0rr   does 

not have to be the same as that of finding two 

nucleons at 0rr   in the conventional picture. 

This change can be accommodated by allowing 
for a different normalization of the external 
wavefunction, even though its shape remains 
the same. Alternatively, the effective potential 

for 0rr  may have to be modified to 

accommodate the different dynamics for 0rr  . 

This would lead to a different shape of the 
external wavefunction. Earlier calculation in 
nonrelativistic quark model framework indicate 
that there is no sudden decrease in the six-quark 
probability for small r. Sign change of the s-
wave phase shift, which is usually explained by 
short range repulsion or equivalently by the 
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vanishing of short-range NN wave function, 
can then be interpreted as the absence of NN 
components in the short-range six-quark wave 
function or as a node in the conventional wave 
function for small r. Thus if the short distance 
behaviour of NN potential is not represented by 
strong repulsion interaction, then the six-quark 
probability can be determined as a wavefuction 
defect of uncorrelated shell model 
wavefunction.Earlier studies on the continuum 
[6] and the bound state [13] wavefunction in the 
two body system show that the current 
conservation guarantees identity of the six-
quark probability and the conventional 

wavefunction defect for 0rr  as long as we do 

not change the interaction for 0rr  . This is 

also true for the wave functions obtained with 
phenomenal NN potential with modest short 
range repulsion. 
 

CONCLUSION 
In the framework of hybrid quark model 
(HQM); 
a) The results of our calculations [10,11] 

show that the six-quark bag formation 
effect contributessignificantly to the 
binding energy difference of mirror 

hypernuclei pair 
6 6He Li  and 

14 14C N  . 

b) The overlap probability of the valence 
nucleon with the hyperon also makes a 
smaller contribution to the binding energy 
difference and should be included in the 
reliable calculations. 

c) It is also observed that six-quark cluster 
formation effect increases the binding of 

 -hyperon in the neutron rich partner (
6 14,He C  ) compared to that of its proton 

rich partner (
6 14,Li N  ). 

d) The correction to the magnetic moment due 
to the six-quark cluster formation effects as 
estimated in the previous work [Mehrotra 
2017b] [12], makes a sizable contribution 
to the magnetic moments of mirror nuclei 
with closed core+one nucleon. 
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