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Abstract 
So-called “Complex Dynamical Systems” (that is, systems displaying complex behavior) do 

appear in condensed matter physics and chemistry, as well as, playing a fundamental role, in 

biological systems. They require a theoretical treatment in terms of “Mathematical 

Modelling”, with statistical formalisms being of large relevance. We present here a feature-

like article describing and discussing the question. It has emphasized the difficult question of 

presence of hidden constraints, and the introduction of nonstandard statistics arising in the 

realm of “Information Theory”. 
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INTRODUCTION 

More than 40 years ago, Montroll and 
Shlesinger wrote that “in the world of 

investigation of complex phenomena that 

require statistical modelling and interpretation 
several competing styles have been emerging, 

each with its own champions” [1]. The study 

of certain physical-chemical systems we may 
face difficulties when handling situations 

involving fractal-like structures, correlations 

(spatial and temporal) with some type of 

scaling, turbulent or chaotic motion, small size 
(nanometric scale) systems, which eventually 

involve a low number of degrees of freedom, 

and so on. It is in these situations that we are 
faced with the existence of “hidden 

constraints” to which we do not have access. 

 
The interest on the study of such kind of 

complex physical systems has been recently 

enhanced as a consequence that they are part of 

electronic and opto-electronic devices of the 
nowadays advanced technologies, and also in 

technological/industrial areas involving the use 

of disordered systems, polymeric solutions and 
materials, ion-conducting glasses, the case of 

micro-batteries and others. Also it is of high 

relevance, the question of the emerging and 

largely expanding systems biology, involving 
complexity, self-organization and information 

theory [2]. 

 

Theory of dynamical systems is considered to 
be pioneered by Bertalanffy who wrote that “If 

someone were to analyze current notions and 

fashionable catchwords, he would find 
‘systems’ high on the list. The concept has 

permeated all fields of science and penetrated 

into popular thinking, jargon, and mass media” 
in the introduction of his 1967 book which was 

a compilation of his writings, the first 

contributions dating from the to mid-1930's [3]. 

 
Mathematical modelling is nowadays an 

integral part of current research in biology, 

particularly in molecular cell biology and 
systems biology in general. Dynamical 

investigations of biological systems place 

them in a common conceptual framework, 

trying to indicate how this framework can be 
used to formulate and solve many of the 

important and perplexing problems of biology, 

particularly those dealing with regulation and 
control in the broadest sense [4]. 
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In particular we may mention cellular 

modelling, a particularly challenging task of 

systems biology and mathematical biology; 
multicellular organism simulation; protein 

folding prediction of their three-dimensional 

structure from its amino acid sequence; brain 

model down to the molecular level; model of 
the immune system; virtual liver, a project to 

produce a dynamic mathematical model 

representing human liver; ecological models, 
i.e., mathematical representation of 

ecosystems; models in ecotoxicology, that is, 

simulation and prediction of effects produced 

by toxic compounds in the environment; 
modelling of infectious diseases, to predict the 

likely outcome of an epidemic; and so on and 

so forth. 
 
Another important topic involving 

mathematical modelling is the one of 
spontaneous generation of spatial patterns, 
originated with Turing [5]. It has been said 
that Turing was the same man who helped 

discover the German high command's ultra-
secret for encrypting codes during World War 
II and the same man laid loud the basis for 
modern computers with his analysis of the 

logical requirements for algorithms in his 
Turing machine, and also formulated a 
fundamental idea concerning the onset of 
patterns in organism [6]. 

 
In what follows, we do here emphasize the 
aspects of statistical approaches, and we close 

this introduction calling the attention to the 
description of modeling biological systems in 
http://en.wikipedia.org/wiki/modelling\_biolog
ical\_systems, where are given extensive 

references of published research. 
 

THE STATISTICAL APPROACH 
As stated at the beginning of the introduction, 
statistics plays a fundamental role in the area 

of mathematical modeling of systems, 
particularly, as noticed, in condensed matter 
physics [7] and biology [8]. 
 

Complexity is present in many cases (self-
organization is the rule in biological systems) 
involving in multiples occasions the difficulty 

of having to face the presence of hidden 
constraints, that is, not to have access to 
information which is quite relevant to the 

proper description of properties of the system. 
The question involves the fact that the 
researcher faces difficulties in satisfying [9] 
Fisher's criteria of efficiency and sufficiency 

in the conventional approach to the well-
established, physically and logically sound 
Boltzmann-Gibbs statistics (“The criterion of 
efficiency is satisfied by those statistics which, 

derived from large samples, tend to a normal 
distribution with the least possible standard 
deviation” and, “A statistics satisfies the 

criterion of sufficiency when no other statistics 
which can be calculated from the same sample 
provides any additional information as the 
value of the parameter to be estimated”, which 

for the purpose of statistical mechanics is to be 
taken as the existence of an incomplete 
description of the physical situation in hands 
[10]). In statistical mechanics the question 

typically consists in that one needs to confront 
some impairment on how to correctly include 
the presence of large fluctuations (and 
eventually higher-order variances) and to 

account for the relevant and proper 
characteristics of the system, implying in lack 
of efficiency and sufficiency, respectively. As 

a consequence, in an attempt to assuage these 
difficulties, and thus allowing to improve the 
predictions, one may resort to statistical 
approaches other than the consistent and, say, 

canonical one of Boltzmann-Gibbs. 
 
Among existing approaches we can mention: 
1) The one used by Landsberg showing that 

functional properties of the (informational) 
entropies give, in fact, origin to different 
types of unusual thermo-statistics, and 
raise the question of how to select a 

“proper” one, that is, some better than 
others? [11]. 

2) For dcades it has been in use in Lèvy 
Statistics, introducing modified non-

Gaussian distributions, which has been 
applied to a variety of problems, and 
recently it had a revival with its 

application to the study of chaotic 
dynamics (see for example Refs. [1, 12, 
13]). 

3) The approach of Ebeling who has 

addressed the question of the statistical 
treatment of a class of systems that are in 
some sense “anomalous” [14, 15]. They 
contain those in nature and society which 
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are determined by its total history. Usually 
the given examples are the evolution of 
the Universe and of our planet, 

phenomena at the biological, ecological, 
climatic, social levels, etc. The approach 
consists into introducing conditional 
probabilities in the context of Boltzmann-

Gibbs formalism in Shannon-Jaynes 
approach, leading to a thermo-statistics 
appropriate for describing complex 
processes with long ranging memory and 

including correlations [14–16]. 
4) The so-called “Super-Statistics” developed 

by Beck and Cohen for non-equilibrium 

systems with complex dynamics in 
stationary states with large fluctuations on 
long-time scales [17]. 

5) The generally called “Non-Extensive 

Thermo-Statistics”, based on Havrda-
Charvat approach [18], which applied to 
several cases is described in the 
Conference Proceedings of Abe et al. [19]. 

6) “Renyi approach” [20, 21] has been 
introduced in the scientific literature, as 
noticed in Ref. [22], with, for example, 
Grassberger and Procaccia [23, 24] using 

it in a modified form as a valuable method 
for characterizing experimental chaotic 
signals. 

7) Jizba and Arimitzu have presented an 

extensive analysis of it in a paper called 
“The world according to Renyi”, where 
they show that making extreme Shannon's 

entropy on a multi-fractal is equivalent to 
directly making extreme Renyi's entropy 
without invoking the multi-fractal 
structure explicitly [25].  

8) Sharma-Mittal approach [26] or better to 
say a variation of it (called Kappa or 
Deformational Statistics), was used by 
Vasyliunas in problem of astrophysical 

plasma [27] and by Kanadiakis in the case 
of relativistic systems [28]. 

 
We recall that in statistical mechanics, the 

probability distribution (statistical operator), 
usually derived from heuristic arguments, can 
also be derived from an extreme-principle 

formalism once it made connection with 
information theory [29–31]. It consists into 
making a maximum, subjected to certain 
constraints, a functional (super-operator). Such 

quantity, first introduced in Shannon's theory 

of communication, can be referred to as 
“measure of uncertainty of information” [32]. 
It has also been called statistical measure and 

entropy, with the understanding that it is 
“information-theoretic entropy”. It is worth to 
emphasize, in view of some confusion that has 
recently pervaded the scientific literature that 

the different possible information theoretic 
entropies are not to be interpreted as the 
thermodynamic entropy of the physical system. 
Cox has noticed that the meaning of such 

entropies is not the same in all respects as that 
of anything which has a familiar name in 
common use, and it is therefore impossible to 

give a simple verbal description of it, which is, 
at the same time, an accurate definition [33]. 
Jaynes has also commented that it is an 
unfortunate terminology, and a major 

occupational disease in that there exists a 
persistent failure to distinguished between the 
informational entropy, which is a property of 
any probability distribution, and the 

experimental entropy of thermodynamics 
which is instead a property of a 
thermodynamic state: Many research papers 
are flawed fatally by authors' failure to 

distinguish between these entirely different 
things (emphasis is ours), and in consequence 
proving nonsense results [34]. 
 

Gibbs-Boltzmann-Shannon information-
theoretic entropy (Kullback-Leibler measure 
in Information Theory [35]) is given by: 

SGBS (t) = Tr{R(t)ln R(t)}  (1) 
with R(t) being the statistical operator for the 
corresponding Gibbs' ensemble. The 
derivation of the statistical operator R(t) has 

been done using various consistency 
arguments, (see for example the review article 
by Balian and Balazs [36]). Among them we 
can highlight the one based on heuristic 

arguments (as it is usual in the textbooks for 
the case of equilibrium, and for non-
equilibrium systems, see for example [37, 
38]), and the one using a extremal-principle 

approach consisting in maximizing SGBS(t) 
subjected to constraints (the so-called MaxEnt 
formalism) [29, 30]. 

 

Concerning statistical mechanics of many-

body systems, it may be noticed that it has a 
long and successful history. The introduction 

of the concept of probability in physics 
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originated mainly from the fundamental essay 

of Laplace [39], who incorporated and 

extended some earlier seminal ideas (see a 
historical review in Ref. [40]). As well known, 

statistical mechanics attained the status of a 

well-established discipline at the hands of 

Maxwell, Boltzmann, Gibbs, and others, and 
went through some steps related to changes, 

not in its fundamental structure, but just on the 

substrate provided by microscopic mechanics. 
Its application to the case of systems in 

equilibrium proceeded rapidly and with 

exceptional success; equilibrium statistical 

mechanics gave, starting from the microscopic 
level, foundations to thermostatics, and the 

possibility to build a response function theory. 

Applications to non-equilibrium systems 
began, mainly, with the case of local 

equilibrium in the linear regime following the 

pioneering work of Onsager [41, 42]. 
 

For systems arbitrarily deviated from 

equilibrium and governed by nonlinear kinetic 

laws, the derivation of an ensemble-like 

formalism proceeded at a slower pace than in 

the case of equilibrium, and somewhat 

cautiously, with a long list of distinguished 

scientists contributing to such development. It 

can be noticed that statistical mechanics gained 

in the 1950s an alternative approach sustained 

on the bases of information theory [30, 37, 38, 

40, 43–47]. It invoked the ideas of information 

theory accompanied with ideas of scientific 

inference [48, 49], and a extremal-principle 

formalism (the latter being Jaynes’ principle of 

maximization of informational uncertainty, also 

referred-to as informational entropy, MaxEnt 

for short), compounding from such point of 

view a theory dubbed Predictive Statistical 

Mechanics [30, 31, 40, 43–47]. It should be 

noticed that this is not a new paradigm in 

statistical physics, but a quite useful and 

practical extremum-principle which codifies the 

derivation of probability distributions, which 

are usually obtained by either heuristic 

approaches or projection operator techniques 

[29, 50, 51]. It is particularly advantageous for 

building non-equilibrium statistical ensembles 

allowing for the systematization of the relevant 

work on the subject that renowned scientists 

provided along the past century, as described by 

Luzzi [29]. 

Moreover, it has been noticed that MaxEnt is 

not a physical principle in the proper sense, 

and should be carefully distinguished from the 
“entropy maximum principle” of 

thermodynamics. The latter is not a rule of 

inference but a condition of thermodynamic 

equilibrium [52]. MaxEnt, apparently first 
proposed by Elssasser [53], was analyzed in 

depth, largely systematized and extended by 

Jaynes, who proposed it as an extension of the 
principle of insufficient reason in Logic [44–

46]. It has been claimed that MaxEnt is singled 

out as a unique method of statistical inference 

that agrees with certain compelling 
consistency requirements. 

 
The point has been critically reviewed by 
Uffink [52]. Moreover, Landauer has argued 
that “advocacy of MaxEnt is perpetuated by 

selective decision making in the generation of 
papers [...] MaxEnt is likely to be sound, but 
often it is dreadfully difficult to understand 
what the constraints are” [54]. Bunge stated 

that “when confronted with a random or 
seemingly random process, one attempts to 
build a probabilistic model that could be tested 

against empirical data, no randomness, no 
probability” [55]. Moreover, as Poincare 
pointed out long ago, talk of probability 
involves some knowledge; it is not a substitute 

for ignorance (and Bunge adds, not correctly, 
in what refers to the statistical mechanics we 
are discussing here, that) “this is not how the 
Bayesian or a personal view, the matter when 

confronted with ignorance or uncertainty, they 
use probability or rather their own version of 
it. This allows them to assign prior 
probabilities to facts and propositions in an 

arbitrary manner (again, this is not the case in 
MaxEnt-based Non-Equilibrium Statistical 
Ensemble Formalism), which is a way of 

passing off mere intuition, hunch, or guess for 
scientific hypothesis [...]; it is all a game of 
belief rather than knowledge”. Sometimes 
arguments against MaxEnt in terms of playing 

dices have been advanced. To this, it must be 
recalled that the question we are addressing 
here does not deal with gambling, but with 
many-body theory, that is, we deal with 

systems with very many degrees of freedom, 
and then is necessary to have in mind the 
distinction between interpretations in terms of 
microscopic and macroscopic variables. 
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The spirit of the formalism is to make use of 
the restricted knowledge available, but without 

introducing any spurious one. Quoting 

Laplace, “the curve described by a molecule of 
air or of vapor is following a rule as certainly 

as the orbits of the planets; the only difference 

between the two is our ignorance [39]. 
Probability is related, in part to this ignorance, 

in part to our knowledge”. Also, as pointed out 

by Bricmont, “the part ‘due to our ignorance’ 

is simply that we use probabilistic reasoning; 
if we were omniscient, it would not be needed 

(but the averages would remain what they are, 

of course) [56]. The part ‘due to our 
knowledge’ is what makes reasoning work 

[...]. But this is the way things are; our 

knowledge is incomplete, and we have to live 
with that. Nevertheless, probabilistic reasoning 

is extraordinarily successful in practice, but, 

when it works, this is due to our (partial) 

knowledge. It would be wrong to attribute any 
constructive role to our ignorance. And it is 

also erroneous to assume that the system must 

be somehow indeterminate when we apply 
probabilistic reasoning to it.” [57]. It has been 

noticed that to derive the behavior of the 

macroscopic state of the system from partial 

knowledge has been already present in the 
original brilliant work of Gibbs. 

 
Heisenberg wrote “Gibbs was the first to 
introduce a physical concept which can only 
be applied to an object when our knowledge of 

the object is incomplete” [58]. Furthermore, it 
can be considered that the dismissal of a 
theoretical approach in physics cannot (and 

should not) be done on the basis of general 
verbal arguments, which may or may not be 
sensible, but which need be strongly founded 
on the scientific method. In other words, the 

merits, or rather demerits, of a theory reside in 
establishing its domain in of validity (see for 
example Refs. [59, 60]), when tested against 
the experimental results it predicts. 
 

This point has recently been forcefully 

stressed by Hawkings [61]. On the particular 

case of the extremum-principle approach in 

Jaynes style (as an alternative way [38], e.g., 
the heuristic one [62] for building the Non-

Equilibrium Statistical Ensemble Formalism), 

Sklar has summarized that Jaynes firstly 
suggested that equilibrium statistical 

mechanics can be viewed as a special case of 
the general program of systematic inductive 

reasoning, and that, from this point of view, 

the probability distributions introduced into 
statistical mechanics have their bases not so 

much in an empirical investigation of 

occurrences in the world, but, instead in a 
general procedure for determining appropriate 

a priori subjective probabilities in a systematic 

way [63]. 

 
Additional analyses are present in the work of 

Fraassen, where it is discussed the possibility 

of alternative rules of construction of 
generalized (information-theoretic) entropy 

expressions containing a free continuous 

parameter (so-called Renyi entropies), that is, 
of the type of those considered here. Uffink 

noticed that it seems that more research would 

be needed to assess their performance in 

concrete cases and in general [64–66]. 
 

Moreover, in an article properly titled 

‘Entropies Galore!’ [11], Peter Landsberg has 
called the attention to the fact that, very-many 

of these information-theoretic entropies can be 

proposed [67]. 

 
The informational-based approach has been 
quite successful in its application to the cases 
of equilibrium and near equilibrium conditions 
[37, 38, 43, 44], and in the last decades has 
been, and is being, also applied to the 
construction of a generalized ensemble theory 
for systems arbitrarily away from equilibrium 
[29, 50, 51, 68–71]. The non-equilibrium 
statistical ensemble formalism (NESEF) 
provides mechanical-statistical foundations to 
irreversible thermodynamics (in the form of 
Informational Statistical Thermodynamics, 
ITE for short [72–75]), a nonlinear quantum 
kinetic theory [29, 50, 51, 76–79] and a 
response function theory [29, 80] of a large 
scope for dealing with many-body systems 
arbitrarily far removed from equilibrium. 
NESEF has been applied with success to the 
study of a number of non-equilibrium 
situations in the physics of semiconductors 
(see for example the review article of Ref. [7]) 
and polymers [81], as well as to studies of 
complex behavior of boson systems in, for 
example, biopolymers (e.g. Ref. [8]) and 
phonon systems [82]). It can also be noticed 
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that the NESEF-based nonlinear quantum 
kinetic theory provides, as particular limiting 
cases, far-reaching generalizations of 
Boltzmann [83], and Mori equations [84], 
together with statistical foundations for 
mesoscopic irreversible thermodynamics [85, 
86], and a higher-order hydrodynamics [86–
90]. 
 

NESEF is built on the bases of heuristic 

standard arguments (see for example Ref. 

[62]), or within the scope of the extremum-
principle method based on the maximization 

of the information-theoretic-entropy of 

Shannon-Jaynes approach in Boltzmann-Gibbs 

statistics given in Eq. (1), that is, the average 
of minus the logarithm of the time-dependent, 

i.e., depending on the irreversible evolution of 

the macroscopic state of the system ‘non-
equilibrium statistical operator’. We again 

emphasize that information-theoretic-entropy 

is in fact the quantity of uncertainty of 

information, and has the role of a generating 
functional for the derivation of probability 

distributions (for tackling problems in 

communication theory, physics, mathematical 
economics, and so on). There is one and only 

one situation when Shannon-Jaynes 

informational-entropy coincides with the 
physical entropy of Clausius in 

thermodynamics, namely, the case of strict 

equilibrium [11, 91]. 

 
We have already called the attention to the 

classical and fundamental paper of 1922 by 

Fisher, titled “On the Mathematical 
Foundations of Theoretical Statistics”, where 

the basic criteria that a statistics should satisfy 

in order to provide valuable results are 
presented. We reiterate that in present day 

statistical mechanics in physics, two of them 

are of major relevance, namely the criterion of 

efficiency and the criterion of sufficiency 
already described. This is so because of 

particular constraints which are present, for 

example, in physical situations involving small 
systems, where on the one hand the number of 

degrees of freedom entering in the statistics 

may be small, and on the other hand 

structures, including boundary conditions of a 
fractal-like character which strongly influence 

the properties of the system, are present. Such 

facts make it difficult to introduce sufficient 

information for deriving a proper Boltzmann-

Gibbs probability distribution, and we may 

mention the examples of nanotechnology, 
nanobiophysics, quantum dots and nanometric 

hetero-structures in semiconductor devices, 

one-molecule transistors, fractal-electrodes in 

microbatteries, and so on. Other case where 
the sufficiency criterion is difficult to satisfy is 

the one of large systems of fluids whose 

hydrodynamic motion is beyond the domain of 
validity of the classical standard approach. It is 

then required the use of a nonlinear higher-

order hydrodynamics, eventually including 

correlations and other variances (a typical 
example is the case of turbulent motion). This 

has an analogy in the treatment of biosystems. 

 

CONCLUSIONS 
The so-called Complex Dynamical Systems (a 

short for systems displaying complex 

behavior) are systems with unexpected 

emerging properties which are the result of 

synergetic processes of their components, 

whose treatment largely depends on 

mathematical modelling and the 

accompanying statistical approaches. 

 

We have presented a description of the 

question with emphasis on the associated 

statistical approach. Particular attention has 

been done on the basis of Information Theory 

in a Shannon-Jaynes approach in the spirit of 

Jeffreys' scientific inference proposal. 

 

Some attention has also been given to the 

difficulties brought about by the 

inconvenience of the presence of hidden 

constraints. Some comments are included on 

the question of the use of nonstandard 

statistics, particularly the Renyi one. 

 

It has been noticed in the main text that the 

foundations of statistical mechanics on 

information theory have been quite successful 

in its applications to the situations of 

equilibrium and near equilibrium conditions, 

and is being used in the construction of a 

generalized ensemble theory for systems 

arbitrarily away from equilibrium involving 

relaxation processes ultra-rapid in time (pico- 

and femto-second scales) and in ultra-small 

regions (nanometer scales). 
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