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Abstract 
This study presents theoretical study of effect of size and symmetry of different shaped three-

dimensional GaAs structures in mesoscopic size regime. The effective mass Schrӧdinger 

equation is used in various shapes and its solution are modified as a function of volume and 

aspect ratio of structures. The calculated energy eigenvalues for square prism, equilateral 

prism, regular tetrahedral, cylindrical and spherical are comparatively analyzed to observe 

the effect of shape, size and symmetry on it. The result shows that energy eigenvalues 

decreases with increase in order of symmetry and volume. However, the energy eigenvalue 

doesn’t vary monotonically with aspect ratio of structures. It decreases first rapidly and then 

increases with increase in aspect ratio of structures. Degeneracy of first excited state of 

different structures was found to depend upon both their order of symmetry and aspect ratio. 
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INTRODUCTION 
The theoretical study of low dimensional 

structures is of prime importance in research 

field of semiconductor. The low dimensional 
structures are those structures in which at least 

one spatial dimension has length in the nano-

size domain, typically in the range 1–100 nm. 

This size regime is also called “mesoscopic 
size regime” and is studied by many 

researchers on its various properties like 

quantization of states [1], sharper density of 
states, quantized conductance [2, 3], reduction 

in electron-phonon coupling [2], etc. 

Electronic states of some of these structures of 

various shapes, like cuboid, cylindrical, 
pyramidal, conical and lens shaped [4–10] 

have been studied by various methods. 

 
In present work, we will consider three-

dimensional GaAs structures of square prism, 

equilateral prism, regular tetrahedron, 
cylindrical and spherical shaped collectively. 

Square prism is a prism whose base is a square 

and base of an equilateral prism is an 

equilateral triangle. Regular tetrahedron is a 

tetrahedron in which all four faces are same 

equilateral triangle. The potential inside each 
of the structure is taken as constant (zero) for 

uniform distribution of material with mass of 

electron equal to its effective mass and outside 
is infinity for complete confinement. This set 

of structures is interesting in sense that the 

order of symmetry, rotational and reflection 

symmetry both, varies over a wide range. 
Therefore, the comparative study of these-

structure with complete confinement along all 

three dimensions shall give idea of effect of 
shape and size as well as symmetry of their 

electronic state in corresponding quantum 

dots, which are desired for construction of 
various semiconductor devices. For example, 

the knowledge of symmetry and size on 

electronic states is required for designing of 

active medium of a semiconductor laser in 
order to increase its efficiency. 

 

MATHEMATICAL MODELS 
The effective mass Schrödinger [11–12, 5] 

equation after taking into the operator ordering 

is written as 
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Where, 
*( )m r is effective mass of the 

electron, ( )V r is the potential function in the 

given region and E is the total energy of the 

particle. ( )r is the wave function associated 

with the electron in material. As material is 

distributed uniformly and completely confined 

inside corresponding structures, ( )V r  can be 

taken as 

 

( ) 0V r = at all points inside each of the 

structure 

= at all points outside of each of the 

structure 

and 
* *( )m r m=  as it is independent of r . 

*m is effective mass of GaAs inside structure 

and is equal to 0.067 me, me = mass of an 

electron [5]. 

 

Therefore, the effective mass Schrödinger 

equation inside each of the considered 

structure takes the form 
2

2

*2
E

m
 −  =    (1) 

 

Square Prism 

Square prism is a prism with square cross-

sectional base. In Figure 1, its base is xy plane 

and height is along z axis. Its region is given 

by 0 ,0x a y a     and 0 z h  . To get 

energy eigenvalues of an electron completely 

confined in it, Eq. (1) is needed to solved with 

boundary condition that wave function 

( , , )x y z  vanish at each point of the surface 

of the square prism. 

 

Let x y z   =  and substituting this in Eq. 

(1) and dividing it’s both sides by x y z   , 

Eq. (1) reduces to 
222

* 2 2 2
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2

yx z

x y z

E
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  
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Let ( )n m lE E E E say= + +  such that 

22
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x

E
m x


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 
− = 
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 with 0x =  at x=0 

and x=a  (2) 
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m

y

E
m y





 
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 with 0y =  at y=0 

and y=a  (3) 

and

22

* 2

1

2

z
l

z

E
m z





 
− = 

 
 with 0z =  at 

z=0 and z=a  (4) 

 

Solution of Eq. (2), (3) and (4) gives 
2 2

* 22
n

n
E

m a
= ,

 

2 2

* 22
m

m
E

m a
= and 

2 2

* 22
l

l
E

m h
=

  
Where, ,n m and l  are integers with 

condition: 1, 1n m  and 1l  . 

So, energy eigenvalues for square prism 

structure is given by 
2 2 2 2

* 2 22
nml n m l

n m l
E E E E

m a h

 +
= + + = + 

 
(5) 

If 0h → in the above equation, it can be used 

to calculate energy eigenvalues for square thin 

film. Using V as volume of structure and 

defining aspect ratio of structure as Q =
h

a
, h = 

height of structure and a = base length of 

structure, Eq. (5) is modified as function of 

aspect ratio and volume which gave. 

 

 
Fig. 1: Square prism structure 
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2 2

* 22
nml

Q l
E n m

m V Q

   
= + +  

   
  (6) 

 

In Eq. (6), , , (1,1,1)n m l =  gives its ground 

state energy as 
2

2 2
3

* 2

1
2

2
GS

Q
E

m V Q

   
= +  

   
  (7) 

and for 1Q  : , , (2,1,1)n m l =  or (1,2,1)  

gives twofold degenerate first excited state 

energy 
2

2 2
3

1 * 2

1
5

2
st

Q
E

m V Q

   
= +  

   
  (8) 

 

For 1,Q =  the square prism structure will be 

identical to cubic structure and 

, , (2,1,1)n m l = , (1,2,1) or (1,1,2)  gives 

threefold degenerate first excited state 

degenerate. For 1,Q   , , (1,1,2)n m l = gives 

non-degenerate first excited state. This 

suggests that degeneracy of first excited state 

also depends upon aspect ratio of the 
structures. 

 

Equilateral Prism 
Equilateral prism is prism which base is an 

equilateral triangle. In Figure 2, its base is an 

equilateral triangle in xy plane and height is 
along z axis, i.e., its region is given as 

0 , 3 3 3x a x y a x    − and 

0 z h  . 

 

Let, ( ) ( ),xy zx y z  =  and substituting 

this in Eq. (1) and dividing it’s both sides by 

xy z  , it gave 

2

* 2 2 2

1 1

2

z
xy

xy z

E
m x y z




 

     
− + + =  

     
  (9)

  
The energy eigenvalues for complete 

confinement in a 2D equilateral triangular 

structure is studied by many researcher by 
various methods and is given by [13, 14] 

( )
22

2 2

* 2

4

2 3
nmE n m nm

m a

 
= + − 

 
 

Where, ,n m are positive integers and 2n m  

So, xy appearing in eq.(9) must satisfy 

2

* 2 22
xy nm xyE

m x y
 

  
− + = 

  
 

Substituting it Eq. (9), we get 

( )
22

* 22

z
nm zE E

m z




 
− = − 

 
   (10) 

 

With the boundary conditions along z-axis: 

0z = at z = 0 and z = h, the solution of Eq. 

(10) gives 
 

2 2

2nm

l
E E

h


− =  with l  are integers and 1l   

Substituting the value of nmE , energy 

eigenvalues came as 

( )
2

2 2

2 2 2

* 2 2

4

3

2
nml

n m nm
l

E E
m a h





  
+ −  

  = = + 
 
  

(11) 

Where, n and m are distinct integer with 

2n m , 1l  . 

As a function of aspect ratio and volume, it 

becomes 

( )
2

232 2 2
2 2

* 2

3 4

2 4 3
nml

Q l
E n m nm

m V Q

      
= + − +           

 (12) 

 
Fig. 2: Equilateral prism structure. 
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In Eq. (12) , , (1,2,1)n m l =  gives its ground 

state energy 

( )

2
232 2

* 2

3 4
3

2 4 3
GS

Q
E

m V Q

      
= +           

 

 (13) 

 

and again degeneracy was found to depend 

upon aspect ratio. For 1Q  , , , (2,1,2)n m l =  

gives its first excited state energy 

( )

2
232 2

1 * 2

3 4 4
3

2 4 3
st

Q
E

m V Q

      
= +           

 (14) 

 

Cylindrical 

Cylindrical structure with circular cross-

section is considered In Figure 3, its circular 

base is xy plane as 

2

2 20
2

a
x y

 
 +   

 
and its 

length is along z axis as 0 z h  . Here we 

have taken ‘a’ as diameter of cylinder so that 

the parameter ‘a’ remains base length of this 

structures as well. Using cylindrical polar co-

ordinates with 
2 2x y = + , eq.(1) takes the 

form 
2 2 2

* 2 2 2

1 1

2
E

m z
  

    

     
− + + =  

     
 

Using method of separation of variables, 

putting 
z   = , above equation 

reduces to 

 
2 2 2 *

2

2 2 2 2 2

1 1 1 1 1 2r z

z

m E
k

z

 

 

  

       

    −
+ + + = = −      

   

(15) 

 

Taking

2
2

2

1
. ( )z

z

z

const k say
z






= = −


   (16) 

 

and

2

2

2

1
.const m







 


= =


,   (17) 

 

Using Eq.(16) and (17), Eq.(15) reduces to 

( )
2

2 2 2 2 2

2

1
zk k m

 



 
  

  

  
+ + − =    

(18) 

Substituting 
2 2

zk k − =  in Eq.(18), it 

gives 

( )
2

2 2 2

2
0m

 



 
   

 

 
+ + − =

 
 

 (19) 
which is cylindrical Bessel equation of order 
m. 

Using the boundary condition  = 0 at 

0 = and 
2

a
 = , we get 

2
2 2

2

2

mn
z

k
k k

a
− =

 
 
 

 

where mnk is a nth zero of mth order cylindrical 

Bessel function with 1, 0.n m   

 
Solving Eq. (15) with boundary condition 

0z = at z = 0 and z=h gave z

l
k

h


= , where 

l is any integer with 1l  . So, 
2 2 2

2

2 2

4 mnk l
k

a h


= +  

22 2 2

* 2 2

4

2

mn
nml

k l
E E

m a h

 
 = = + 

 
 

 (20) 

In limit 0h → , the above equation can be 

used to find energy eigenvalues of an electron 
confined in a circular thin film. In terms of 
volume and aspect ratio, it can be modified as 

2
2 2 23

2

* 2
4

2 4
nml mn

Q l
E k

m V Q

   
= +  

   
.   (21) 

 

 
Fig. 3: Cylindrical structure 
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Using first zero of zeroth order Cylindrical 

Bessel function 0,1 2.405k =  [15, 16], i.e., 

n=1, m=0, and l =1, gives its ground state 

energy 

( )
2

2 23
2

* 2
4 2.405

2
GS

Q
E

m V Q

   
= +  

   

   (22)

 
and first zero of first order Cylindrical Bessel 

function 1,1 3.832k =  [15, 16], i.e., n=1, m=1, 

and l =1, first excited state energy comes as 

( )
2

2 23
2

* 2
4 3.832

2
GS

Q
E

m V Q

   
= +  

   
 

  (23) 

 

Spherical 

Taking center at origin, its region is given as 
2

2 2 20
2

a
x y z

 
 + +   

 
. Again, parameter 

‘a’ is diameter of this structure so that it 

remains similar to base length (Figure 4). 

Obviously, the aspect ratio will be one as ratio 

of height and base length are same for 

spherical structure. Using the spherical polar 

co-ordinates, Eq.(1) reduces to 
2 2

2

* 2 2 2 2 2

1 1 1
sin

2 sin sin
r E

m r r r r r
  

    

        
− + + =    

        

 

2 2
2

* 2 2 2

ˆ1

2

L
r E

m r r r r
 

    
 − − =  

    
 

(24) 

Where, L2 is an operator corresponding to 

magnitude of square of angular momentum of 

the electron confined in the spherical region. 

 

Using variable separable form 

( )( )Elm lmR r Y  =   and using the fact that 

( ) ( ) ( )2̂ 1lm lmL Y l l Y    = +  ,   (25) 

Where, ( )lmY   is spherical harmonics with 

l  is an integer and 

0, , ( 1),.......( 1),l m l l l l = − − − − .  

 

Substituting Eq.(25) in Eq.(24), it reduces to 

the differential equation for radial function as 

( )2 2

* 2 2

12

2
El El

l l
R ER

m r r r r

 +   
− + + =  

    
 

  (26) 
 

As ‘m’ does not appear in Eq. (24), the radial 

function is independent of ‘m’. So, we have 

written Elm ElR R= . Taking 

*
2

2

2m E
k= , we 

get 

( )2
2

2 2

12
0El

l l
k R

r r r r

 +   
+ + + =  

     , 

 

Substituting kr = in above equation gives, 

( )
( )

2
2

2 2

12
1 0El

l l
R 

   

 +    
+ + − =   

      

 

which is spherical Bessel differential equation 

of order l. Using boundary condition that 

radial wave function should vanish at surface 

of the sphere, i.e., at r = a/2, we get 

2
ln

a
k p=  where lnp is nth zero of lth order 

spherical Bessel function with 1, 0.n l 
 

Substituting the value of ‘k’, it gives energy 

eigenvalues as 

( )
2

2

2

*2
2

nl lnE p
a

m

=
 
 
 

,   (27) 

As aspect ratio for spherical structure is 

always one, so in terms of volume 

 

( )
2

2 3
2

*

4

2 3
nl lnE p

m V

 
=  

 
.    (28) 

 

 
Fig.4: Spherical structure. 
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First zero of zeroth order Bessel function 

0,1p = , i.e., 0, 1l n= = gives its ground 

state energy as 

( )
2

2 3
2

*

4

2 3
GSE

m V




 
=  

 
    (29)

 
 
and first zero of first order spherical Bessel 

function [15] 1,1 4.4934p = , i.e., 1, 1l n= =
 

gives its first excited state energy 

( )
2

2 3
2

1 *

4
4.4934

2 3
stE

m V

 
=  

 
.    (30) 

 
Regular Tetrahedron 
A regular tetrahedron is a tetrahedron which 
each side has equal length ‘a’ (Figure 5). The 
energy eigenvalues of an electron of mass ‘m’ 
confined in tetrahedral box of side length 

3  is given by [14] 

( ) 
2

2 2 23 2 2 2 n
8

nmlE n m l nm ml l
m

= + + − − −

(31)
 Where, n, m and l are distinct positive 

integers. 
We have taken the above calculated energy 
eigenvalue for regular tetrahedron structure 
here only for its comparative study of effect of 
shape, size and symmetry on energy 
eigenvalues with other structures considered of 
different order of symmetries, viz. equilateral 
prism, square prism, cylindrical and spherical. 
Using same method [14] for regular 
tetrahedron of any arbitrary side length ‘a’, the 
energy eigenvalues came as 

( ) 
2 2

2 2 2

* 2

3
3 2 2 2 n

8
nmlE n m l nm ml l

m a


= + + − − −

(32) 
 

Obviously substituting 3a =  in Eq. (32) 

will give back the Eq. (31) [14]. Aspect ratio 
of a regular tetrahedron structure is always 

equal to fixed to
2

3
, Eq.(32) can be modified 

as function of its volume as 

( ) 
2

32 2
2 2 2

*

3 2
3 2 2 2 n

8 12
nmlE n m l nm ml l

m V

  
= + + − − −  

 

(33) 

, , (1,2,3)n m l = in Eq.(32) gives its ground 

state energy and , , (1,2,4)n m l = in Eq.(32) 

gives its first excited state energy 
 
To make comparative studies of energy 
eigenvalues of these structure in terms of its 
volume and aspect ratio for different structures 
are summarized in Table 1. 
 

DISCUSSION OF SYMMETRY OF 

STRUCTURES 
Considering rotational and reflection 
symmetries of each of the above structures, 
order of symmetry is studied. For equilateral 
prism, we first observe symmetry of its base, 
which is an equilateral triangle. Equilateral 
triangle has C3v group of symmetry, i.e., it has 
three rotational and three reflection symmetries. 
 
Therefore, its order of symmetries is 6. Since 
D3 is isomorphic to C3v, D3= C3v. As equilateral 
prism has two equilateral triangle and each one 
is reflection of other about mid horizontal 
plane, its symmetries will form a group that 
contain the elements of D3 plus the horizontal 
reflection plane σh, i.e., group D3h and it has 
twice as many elements as D3 [17, 18]. So, 
equilateral prism has six rotational and six 
translational symmetries, which gives its order 
of symmetry equal to 12. 
 
Similarly, C4v symmetry of square leads to D4h 
symmetry to square prism and it will have 
eight rotational and eight reflection 
symmetries giving order of symmetry equal to 
16. Again using the symmetry of equilateral 
triangle, the symmetries of regular tetrahedral 
structure form Td group in which include 
twelve reflection and twelve rotational 
symmetries giving order of symmetry to 24 
[18]. These symmetries for discussed 
structures are summarized in Table 1. 

 

 
Fig.5: Regular tetrahedral structure. 
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Cylinder has its axis as  -fold rotational 
symmetry and axes of twofold symmetry 

(about perpendicular bisectors to its length) 

and these symmetry forms a group D . 

Sphere has also   axes (diameters) of  -fold 

symmetry. So, it has  rotational and 
reflection symmetries. These forms a group 

O(3) [18]. 

 

The symmetries of structures impart 
degeneracy to electronic states. The structure 

belonging to D3h and D4h can have maximum 

twofold degeneracy while structure belonging 
to Td can have threefold degeneracy [18]. 

After analyzing the energy expressions for 

various structures, it was observed that the 
ground state will be non-degenerate in all 

structures and degeneracy of first excited will 

depend upon order of symmetry as well as 

aspect ratio. For example, as observed in sec 
II(a), first excited state in square prism is 

doubly degenerate for aspect ratio less than 

one, triply degenerate for aspect ratio equal to 
one and non-degenerate for aspect ratio less 

than one. Increase in order of symmetries lead 

to increase in degeneracy of first excited state. 

Regular tetrahedral has threefold first excited 
state. Spherical structure has also threefold 

degeneracy to its first excited stated and in 

general its degeneracy will be 2l+1 times for 
corresponding value of l 

 

To study effect of order of symmetry on value 
of ground state energy, its value is calculated 

for considered structures at fixed volume and 

aspect ratio. It was observed that ground state 

energy decreases with increase in order of 
symmetry of structures at fixed volume and 

aspect ratio. For 100 nm3 volume and aspect 

ratio ‘one’, the ground state energy variation is 
shown graphically in Figure 6. 

 

DISCUSSION OF EFFECT OF SIZE 

AND ASPECT RATIO: 
Ground state energy of each structure were 
calculated and plotted collectively. Range of 
volume 10 nm3 to 107 nm3 and range of aspect 
ratio (height to base length ratio) 0.1 to 2 have 
been considered. The above volume and aspect 
ratio range ensures that the dimension of 
structures remains nearly in mesoscopic 
regime [15, 5]. 

At first, we kept the aspect ratio of square 
prism, equilateral prism and cylindrical shapes 
fixed at ‘one’ as that of spherical structure. We 
calculated variation of ground state energy 
with volume for each of these three structures 
at fixed aspect ratio. The result is given 
graphically in Figure 7. Ground state energy 
variation with volume for square prism, 
equilateral prism, cylindrical and regular 

tetrahedral at fixed aspect ratio 
2

3
(aspect 

ratio of a regular tetrahedron) is plotted in 
Figure 8. 

 
Obviously, for each of the structures, ground 
state energy is decreasing with increase in 
volume. The first excited state energy was also 

found to be decreasing with increase in 
volume. This can be seen as a consequence of 
Uncertainty principle. Increase in volume 

leads to increase in allowed standard deviation 
in position of the electron, which decreases the 
standard deviation accessible to its linear 
momentum in accordance with Uncertainty 

principle. This lowers the value of ground 
state energy of the electron with increase in its 
volume. 

 

In order to observe the effect of aspect ratio on 

electronic states, the variation of ground state 
energy is calculated for square prism, 

equilateral prism and cylindrical by varying 

aspect ratio and keeping the volume fixed at 
100 nm3. Spherical and regular tetrahedral 

structure is not included here as its aspect ratio 

is fixed. The result is shown graphically in 
Figure 9. 

 

The results show that the energy eigenvalues 

doesn’t vary monotonically with aspect ratio. 
It first decreases rapidly with aspect ratio and 

then increases gently with aspect ratio. 

 
This can be seen analytically as result of two 

competing effect- one due to confinement 

along height and other due to confinement of 
base of the structure. When aspect ratio is 

small, increase in height leads to larger 

decrease in confinement with respect to 

increase in confinement due to decrease in 
base length. Thus an overall decrease in 

confinement leads to rapid decrease in ground 
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state energy with increase in aspect ratio. For 
the larger aspect ratio, the above effect due to 

change in confinement along height and base 

are reversed, i.e., at larger aspect ratio, 
decrease in base leads slightly larger increase 

in confinement than decrease in confinement 

due to increase in height. So, an overall a 
slight increase in confinement with increase in 

aspect ratio leads to gentle increase in ground 

state energy. Obviously, the aspect ratio for 
which the effects cancel each other, the ground 

state energy is minimum. 

 
Table 1: Summary of Energy Eigen Values. 

Shape of structures Energy eigenvalues Conditions on integers n, m and l 

Equilateral prism 2

2 2 23
2 2

* 2

3

2 4
nml

Q l
E n m

m V Q

    
= + +    

  

 

1, 1n m  and 1l   

Square prism 

( )
2 22 2 23

2 2

* 2

4

2 3
nml

Q l
E n m nm

m V Q

      
= + − +    

     

 

2n m , 1m  and 1l   

Cylinder 2
2 2 23

2

* 2
4

2
nml mn

Q l
E k

m V Q

   
= +  

   

 
1, 0n m  and 1l   

Sphere 

( )
2

2 3
2

*

4

2 3
nl lnE p

m V

 
=  

 
 

1 0n and l   

Regular Tetrahedron 

( ) 
2

32 2
2 2 2

*

3 2
3 2 2 2 n

8 12
nmlE n m l nm ml l

m V

  
= + + − − −  

   

1, 1, 1n m l

and n m l

  

 
 

 
Table 2: Symmetry Elements of Structures. 

Shape of structures Symmetry group No. of rotational symmetries No. of reflection symmetries Order of symmetry 

Equilateral prism D3h 6 6 12 

Square prism D4h 8 8 16 

Regular Tetrahedron Td 12 12 24 

Cylindrical D  
      

Spherical O(3)       

 

 
Fig. 6: Variation of Ground State Energy. 
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Fig. 7: Ground State Energy for a Fixed Aspect Ratio 1. 

 

 
Fig. 8: Ground State Energy for a Fixed Aspect Ratio 0.816. 

 

 
Fig. 9: Variation of Ground State Energy at Fixed Volume. 
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CONCLUSION 
From this comparative study between energy 

eigenvalues in different structures, we can 
conclude following things: 

1. For each shape for a given aspect ratio, the 

ground state energy and first excited 

energy decreases with increase in volume 
of the structure. 

2. For each shape for a given volume, the 

ground state energy at first decreases 
rapidly with increase in aspect ratio and 

after attaining a minimum value, it 

increases gently with aspect ratio. 
3. Ground state energy of different structures 

decreases with increase in the order of 

symmetry of structures. 

 
The analytical reason of (1) and (2) are 

discussed in section IV, and that of (3) is 

discussed in section III. This study can also be 
extended to calculate the energy eigenvalues 

of corresponding quantum well by taking 

height of structure very small and restricting 
the motion along height of structure; and that 

of quantum well wire by taking base length 

very small and allowing the electron motion 

along only its height. The Knowledge of 
energy eigenvalues of various shaped 

structures can be used during development of 

quantum dot devices and related 
semiconductor devices. Further, the one can 

look to construct the wave packet in these 

three-dimensional structures to understand the 

effect of symmetry and size on time dependent 
electronic properties. 
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