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Abstract 
This study presents the Magneto-thermodynamic Response of Orthotropic Solid Cylinder in 

context of fractional order theory. The Laplace transform and finite Marchi–Zgrablich 

transform techniques have been used to analyze the thermal behavior of solid cylinder. The 

Magneto-thermodynamic stresses and perturbation of magnetic field vector in finite 

orthotropic cylinder are obtained in the transformed domain under sudden temperature 

change to a constant temperature and permeated by uniform primary magnetic field. 

Numerical computed results of stresses and perturbation of magnetic field vector are depicted 

graphically for Caputo type time fractional equation of order α along radial direction. Some 

particular cases are also discussed in the context of the problem. 
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INTRODUCTION 

Magneto-thermodynamic theory of 

thermoelasticity has aroused much interest and 

it has wide range of applications in many 
mathematical and engineering modeling such 

as in design of nuclear reactor, geothermal 

engineering, high accelerators energy particle, 
etc. Biot [1] initially introduced the theory of 

coupled thermoelasticity to overcome the first 

shortcoming. The governing equations in this 
coupled theory involved eliminating the first 

paradox of the classical theory. After this 

many generalizations to the coupled theory 

were introduced. Hetnarski and Ignaczak [2] 
examined several important analytical results 

for the coupled theory. Hetnarski and Eslami 

[3] introduced a unified generalized 
thermoelasticity theory and also successfully 

presented the mathematical and mechanical 

background of thermodynamics, classical 
thermoelasticity advanced theory and 

applications, generalized thermoelasticity. 

Preziosi [4] and Cattaneo [5] stated the Fourier 

law for a finite propagation speed.  

Dhaliwal [6] dealt with the generalized elastic 
theory applied to the problems of 

magnetothermoelastic waves produced by 

thermal shocks in an infinite elastic solid with 
cylindrical cavity. Ezzat [7] found the 

distribution of thermal stresses and 

temperature in perfectly conducting half 

spaces when suddenly heated in absence of 
magnetic field. In Sherief [12], the Laplace 

transform technique was used to find the 

distribution of thermal stresses and 
temperature in a thermoelastic, electrically 

conducting half spaces under sudden thermal 

shock and permeated by magnetic field. 
 

Sharma [14] evaluated the distribution of 

temperature, deformation and magnetic field in 

a homogeneous isotropic, thermally and 
perfectly electrically conducting, elastic half 

space in context of Green-Lindsey theory of 

thermoelasticity. Chandrasekharaiah [15] 
studied the propagation of magneto-thermo-

elastic disturbances with thermal relaxation in 

a perfectly conducting unbounded solid, due to 
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heat sources distributed over a plane parallel to 

the applied magnetic field. Choudhuri [16] 

investigated the propagation of magneto-
thermoelastic disturbances produced by a 

thermal shock in a finitely conducting elastic 

half-space in contact with a vacuum. Ezzat 

[17] established the model of the two-
dimensional equations of generalized 

magneto-thermoelasticity with two relaxation 

times in a perfectly conducting medium [18].  

 

Povstenko [19] proposed A quasi-static 

uncoupled theory of thermoelasticity based on 

the heat conduction equation with a time-

fractional derivative of order α. Mondal [20] 

constructed a new theory of two-temperature 

generalized thermoelasticity in the context of a 

new consideration of dual-phase-lag heat 

conduction with fractional orders.  

 

Kalkal [21] studied the effects of fractional 

order parameter, magnetic field, viscosity and 

diffusion on the thermoelastic interactions in 

an infinite body whose surface suffers a 

mechanical load. 
 

NOTATION AND GOVERNING 

EQUATIONS  
The basic relationship for the problem defined 

above can be summarized as follows: 

1. The Caputo type fractional derivative for 

nonlocal heat conduction is defined by [15] 
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To find Laplace transforms of the Caputo 

derivative it needs to know the initial values of 

the function )(tf  and its integer derivatives of 

the order 1,....,2,1,0 −= nP   
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2. The governing electrodynamics Maxwell’s 

equation of fractional order   for perfectly 

conducting body is given as: 
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where, J  is current density, h  is perturbation 

of magnetic field vector ),0,0( zh , e  is 

perturbation of electric field vector, H  is 

magnetic intensity vector ),0,0( zH  and U  is 

the displacement vector. Here the magnetic 
permeability,  , of the orthotropic solid 

cylinder is assumed to be equals the magnetic 

permeability of the medium around it. 

 

3. Stress-strain relationship: The 

generalized Hooke’s law for an orthotropic 

thermoelastic cylinder from Lekhnitskii 

[10] can be written as 
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Here, ),,( zrii  =  denotes the strains 

components also  ,r  are radial and 

circumferential stress. iE ,  ji ,  i
  

),,,( zrji =  are the Young’s modulus, 

Poison’s ratio and coefficient of thermal 
expansion in radial, circumferential and axial 

directions respectively.  

 

4. Stress-Displacement relationship: 

Considering a generalized plane strain 

problem, 0=
z
  and solving equation (4) 

to (6) we get  
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Where, constants 321 ,, sss  are as shown 
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FORMULATION OF THE PROBLEM 

Consider a long orthotropic solid cylinder of radius a placed in an axial magnetic field ),0,0( zHH . 

If electromagnetic pulse or   rays pulse radiant energy is incident on a solid cylinder, then it 

undergoes rapid change in temperature ),( trT . This then leads to interactions between the 

deformations of the cylinder and the perturbation of the magnetic field vector in orthotropic cylinder.  

 

Applying the initial magnetic field ),0,0( zHH  to equation (3) in ),,( zr   i.e. cylindrical polar 

coordinate system, we get 
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rU  is the radial displacement component.  

 

From equations (3), (9), (10), (11), (12) and Fung [8] the magneto elastic dynamic equation in time 

fractional order context of orthotropic cylinder becomes 
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Where, rf  is the Lorentz force [9] which is given by  
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Substituting equations (7) and (8) into equation (13), the basic displacement equation of 

magnetothermoelastic motion in an orthotropic cylinder may be expressed as in Wang et al [11]. 
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Where, ar 0 , 0t  
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Omitting the Maxwell tensor on the surface of orthotropic cylinder, the corresponding boundary 

conditions are  

0=rU         at 0=r  
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The initial conditions are  
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SOLUTION OF THE PROBLEM  
Let us assume that the general solution to equation (15) may be expressed in the form  

),(),(),( trWtrVtrU +=     (19) 

 

Where, ),( trV  is the static part of solution to equation (15) and ),( trW  is the dynamic part of 

solution to equation (15). The static part V  satisfies the solution with inhomogeneous boundary 
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conditions while the dynamic part W  satisfies the solution with homogenous boundary conditions.  

For the static part ),( trV , the governing equations and boundary conditions become 
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0=V  at 0=r         (21) 

 

)()(
1

2

2

taTS
r

V

EEr

V

EE
ar

zrzr

z

z 












=



















−+

















−

=

  (22) 

 

Equation (20) simplifies to  
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From equation (23) the solution of equation (20) which satisfies the boundary conditions (21) is 

written as 
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The unknown constant 1C  in equation (24) can be easily determined from boundary condition (22). 

The dynamic part of the solution ),( trW  should satisfy the inhomogeneous equation (26) and 

corresponding homogenous boundary conditions (27) and (28) and initial condition (29). 

 

W
r

N

r

W

rr

W
2

2

2

2 1
−




+
















+




=

+

+

+

+









 1

1

1

1

2

1

t

V

t

W
   (26) 

0=W         at 0=r  (27) 

0
1

2

=






















−+

















−

=ar

zrzr

z

z

r

W

EEr

W

EE 










    (28) 

00 ==−= tatVW ,  00 ==



−=




tat

t

V

t

W








   (29) 

 

Where, V  is the static solution as on equation (24), and   is Magneto thermoelastic wave speed. 

 

Applying finite Marchi–Zgrablich (defined in Appendix) and Laplace transform and their inversions 
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(defined in Equation (1) and (2)) to equation (26) and making use of the transformed boundary and 

initial conditions (27)–(29), one obtains temperature distribution function expressed as follows, 
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Where, ),( tnV is finite Marchi-Zgrablich integral transform of ),( trV  with respect to the Kernel 

function ),,( rS np   and weight function r . Here the Kernel ),,( rS np   can be defined as 
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)( rJ p   and )( rYp   are Bessel’s function of first and second kind respectively. 

 

By substituting equations (24) and (30) in equation (19) the general solution for the basic governing 

equation (15) becomes 
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(33) 

By substituting equation (33) in equations (7) and (8), we can obtain the corresponding Magneto 

thermodynamic stress. Similarly the perturbation response of the magnetic field vector can be 
obtained by substituting equation (33) in equation (12). 

 

NUMERICAL ANALYSIS 
The symmetric magnetothermoelastic problem of an orthotropic solid cylinder placed in uniform axial 

magnetic field and subjected to thermal shocks due to any source is considered. Here for the 

orthotropic solid cylinder the various material constants taken are:  

az GPE 150= , ar GPE 5.7= , aGPE 20=  

25.0=zr , 3.0= z , 2.0=r  

C
r 0

4 1
101 −= , 

0

5 1
101

C

−= , 
C

z 0

6 1
101 −=

 
Magnetic interference wave speed 1000=  m/s. For the sake of convenience, we choose the radius 

of a thin circular plate to be a= 1 m. 

 
Figures 1–3 show the response histories for radial stress, circumferential stress, and magnetic field 

vector perturbations for fractional-order parameter 25.1,1,5.0 and=  depicting weak, normal, 

and strong conductivity and fixed time 6.0=t . Also solid cylinder subjected to thermal shocks and 

placed in uniform axial magnetic field respectively. For numerical calculation MATLAB 2013 has 

been carried out in a programming environment and here the Mittag–Leffler functions were evaluated 
following Podlubny [22]. 
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Fig. 1: Radial Stress Distribution. 

 

 
Fig. 2: Circumferential Stress Distribution. 

 

 
Fig. 3: Magnetic Field Vector Perturbations. 
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Figure 1 shows the radial stresses distribution 
for different value of radius. It is clear that 
radial stress have zero magnitude initially. For 

different 25.1,1,5.0 and=  radial stress 

value goes on increasing as moving radially 
outward. 
 
Figure 2 shows response curves for 
circumferential stress along the radial 
direction. For different 

25.1,1,5.0 and=  circumferential stress 

value goes on increasing in the range 

2.00  r and then start converges towards 
radially outward direction. A stress–focusing 
effect also observed near the center in a 
conducting orthotropic solid cylinder placed in 
axial magnetic field. 
 
Figure 3 represents the response curves for 
perturbation of magnetic field vector in 
orthotropic solid cylinder for different value 

of 25.1,1,5.0 and= . A complex 

distribution of perturbation responses appear 
as going radially outward. 
 

CONCLUSION 
The solutions for displacement, stress 
components and magnetic field vector 
perturbations were found by using the Laplace 
transform and finite Marchi–Zgrablich 
transforms for conducting orthotropic solid 
cylinder placed in axial magnetic field. The 
effect of fractional heat conduction with their 
thermoelasticity by quasi-static approach has 
been discussed in this work. Stress 
distributions and magnetic field vector 
perturbations plotted for different 

25.1,1,5.0 and= . By using this we can 

design various magnetoelastic elements for 
specific engineering requirements where 
fractional differential operator describes 
memory effects, and space fractional 
differential operator deals with the long-range 
interactions. The knowledge can also be used 
for proper selection of materials for in 
designing and manufacturing field; and to 
control the magnetothermoelastic stresses and 
magnetic field vector perturbations. 
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APPENDIX 

A Short Note on Finite Marchi-Zgrablich Integral Transform 
The finite Marchi-Zgrablich integral transform of )(rf  is defined as [13] 

=
b

a
mpp drrSrfrmf ),,()()(       (A1) 

Where, 1 , 2 , 1  and 2  are the constants involved in the boundary conditions 

0)()( 21 =+
=ar

rfrf   and 0)()( 21 =+
=br

rfrf   for the differential equation 

0)()/()()1()( 22 =−+ rfrprfrrf , )(mf p
 is the transform of )(rf  with respect to kernel 

),,( rS mp   and weight function r . The inversion of equation (A1) is given by 
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Where, kernel function ),,( rS mp   can be defined as 
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being  
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Where, )( rJ p   and )( rG p   are Bessel function of first and second kind respectively and 

)},,(),,(),,({
2

)},,(),,(),,({
2

)},,({

1

2
2

11

2
2

2

aSaSaS
a

bSbSbS
b

dxxSxC

mpmpmp

mpmpmp

b

a

mpm





−

+−

−−

−== 
 

 

Cite this Article 
N.L. Khobragade, N.K. Lamba. Magneto-
thermodynamic Stress Analysis of an 

Orthotropic Solid Cylinder by Fractional 

Order Theory Application. Research & 

Reviews: Journal of Physics. 2019; 8(1): 
37–45p. 


