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Abstract 
There are several self-organization processes in physics such as second-order phase transitions 

and associated scale-invariant phenomena, structure formation in thermodynamic systems 

away from equilibrium, self-organization of solitons into vortices in magnetized plasma etc. 

Space plasmas often display very complex behavior which includes multiscale dynamics, spatio-

temporal chaos and self-organized criticality. The study of self-organization in magnetospheric 

plasma and its relation with instabilities is a subject at the forefront of space research and in 

particular, having relevance in the analysis of magnetospheric dynamics. The forced self-

organized criticality concept was mostly motivated by the physics of magnetospheric substorms, 

which seems to require a continuous loading process in order to drive it into a critical or near-

critical state. Low frequency stochastic fluctuations of the geomagnetic AE index with a 1 𝑓⁄  

spectrum have been interpreted in terms of a SOC system. We analyze in detail the 

multifractality of the auroral indices such as AE, AL and AU which may give an insight into the 

existence of self-organization in the magnetotail with underlying complex multifractal 

accumulation/dissipation dynamics in the plasma sheet. 
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INTRODUCTION 
The earth’s magnetosphere is considered as a 
complex dynamical system driven constantly by 
the solar wind. Due to this continuous forcing, 
the magnetotail plasma sheet is driven into a 
non-equilibrium self-organized global state, 
characterized by criticalities with scale invariant 
events, self-similar spatial structures, and 
multifractal topology [1, 2]. These are similar to 
out-of-equilibrium states which are seen to 
emerge naturally in numerous plasma physics 
models by sporadic dissipation, through spatio-
temporal chaos. Scaling behavior in a 
geomagnetic time series like auroral and polar 
cap indices represents a typical signature of a 
multi-time scale cooperative behavior which 
reflects the underlying long-range cooperative 
interactions existing in the complex 
magnetosphere system [3]. It also reveals inner 
structure of the magnetosphere with which we 
can draw inferences whether the processes under 
study are coupled or not. Physical models of the 
dynamics of the earth’s magnetotail are 
described in terms of stochastic behavior of a 
nonlinear dynamical system near forced and/or 
self-organized criticality. Multi-scale 
intermittent turbulence of overlapping plasma 

resonances and current-driven instabilities are 
believed to lead to the onset and evolution of 
substorms, which explains the localized and 
sporadic nature of bursty magnetic reconnection 
and the fractal spectra observed in the 
magnetotail region. 
 

Numerous studies have considered the fractal 
and multifractal structure of space physics data 

[3–5]. A fractal is an object in which the parts are 
in some way related to the whole. Self-similarity, 

invariance with respect to scaling, is an 
important characteristic of fractals. It means that 

the object or process is similar at different scales. 
As an example, we may say that individual 

branches of a tree are qualitatively self-similar to 
the other branches, but each branch is also 

unique. A self-similar process is also called 
uniscaling or monofractal. Multifractal process 

extends the idea of similarity to generalized 
scaling (or multiscaling) that includes both long-

memory as well as extreme variations [6]. 

Scaling properties in moments of the process are 
the most common way to study multifractality. 

Several time-domain variance-based methods 
are proposed till date to detect the fractal 

features, such as the detrended fluctuation 
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approach (DFA), the factorial moments and the 

detrended moving average (DMA) [7–10]. 
Similarly, in the frequency-domain also fractal 

analyses can be carried out using simple 
methods such as the scaling of power spectral 

density (PSD) [11]. The major short-coming of 
the variance-based methods is that albeit the 

scale-invariance property may be noticed, it is 
difficult to precisely calculate the value of the 

exponent. For processes such as Lévy flights, 
the variance tends to be infinite and accurate 

results may not be yielded using variance-based 
methods. Even though, time-frequency wavelet 

methods such as wavelet transform modulus 
maxima (WTMM) are proven useful for 

multifractal analysis, it also suffers certain 
drawbacks [12]. To ensure reliable results, 

selection of a well-matched analyzing wavelet 

is crucial. Also, if the initial and final points of 
the signal exhibit scaling artifacts, 

inappropriate selection of scales would affect 
the accuracy of the results. The diffusion 

entropy approach (DEA) used in this study can 
overcome most of these difficulties and by 

extending ordinary DEA to a generalized 
multifractal DEA (MF-DEA) approach, it is 

possible to extract multifractal features of 
magnetospheric indices [13–19]. Unlike DFA, 

DEA does not rely on trends superposed on 
geomagnetic fluctuations while it is based on 

the direct evaluation of information entropy of 
the diffusion process. It is well known that 

entropy is considered as a more comprehensive 
indicator of the stochasticity inherent in a 

distribution. The extraction of the temporal 

scaling exponent of diffusion processes using 
DEA is valid for both Gaussian (which have 

finite variance) and non-Gaussian statistics 
such as heavy-tailed distributions and Lévy 

processes. This makes DEA or its multifractal 
variant one of the most promising methods in 

the study of fractality and self-similarity of 
geomagnetic indices. Morozov had made some 

comments regarding the need of a strong 
mathematical background for MF-DEA 

technique [17, 18, 20]. Jizba and Korbel have 
extensively verified the different mathematical 

aspects of MF-DEA and they have also 
formulated an efficient method for the 

computation of probabilities through optimized 
binning [19, 21].  

 

The aim in this paper is to find multifractal 

scaling features of auroral and indices during 

calm and magnetically disturbed periods and to 

compare the multifractality of AE, AU, AL and 

PC indices, considering their relationship with 

solar activity. The changes in the 

magnetosphere system are evaluated using the 

diffusion entropy exponent and associated mass 

exponent which are calculated from aforesaid 

geomagnetic proxies. The rest of the paper is 

structured as follows: The data used for the 

present work are discussed at first; then 

multifractal diffusion entropy (MF-DEA) 

technique used to evaluate multifractality is 

summarized briefly. After this, MF-DEA 

technique is applied to the aforementioned 

proxies and lastly, the implications of the 

results are discussed. 

 

DATA 
1 min AE, AU and AL indices were taken from 

the World Data Center for Geomagnetism, 

Kyoto, Japan and PC index from the World 

Data Center for Geomagnetism, Copenhagen, 

Denmark. 

 

METHOD 

If a stationary time series, {𝑥(𝑚)}𝑚=1
𝜁

 is 

considered such that all possible segments with 

length 𝑙 could be written as:  
𝜓𝑖 = {𝑥𝑖 , 𝑥𝑖+1, . . . , 𝑥𝑖+𝑙−1}; 𝑖 = 1,2, . . . , 𝜁– 𝑙 + 1  

(1) 

If length 𝑙 is taken as time scale, then vector 𝑍𝑖 

can be regarded as the particle’s trajectory 

beginning from its initial state 𝜓𝑖(0) = 0. 

Likewise, actual time series can be mapped into 

an ensemble which contains (𝜁– 𝑙 + 1) 

realizations of a stochastic process: 

𝜉𝑖(𝑙) = ∑ 𝜓𝑖(𝑚)𝑙
𝑚=1    (2) 

 

If the displacement interval is partitioned such 

that the particle appears into 𝐵(𝑙) bins and the 

numbers of particle’s occurrences in each bin at 

time 𝑙denoted as: 𝜁𝑚(𝑙); 𝑚 = 1,2, … , 𝐵(𝑙), then 

probability density function (PDF) can be 

approximated by the relative frequency: 

𝑃(𝑚, 𝑙) =
𝜁𝑚(𝑙)

𝜁−𝑙+1
;  𝑚 = 1,2, … , 𝐵(𝑙) (3) 

 

Now, the diffusion entropy will be: 

𝐷𝑖𝑓𝑓𝐸𝑛 = − ∑ 𝑃(𝑚, 𝑙)𝑙𝑜𝑔𝑃(𝑚, 𝑙)𝐵(𝑙)
𝑗=1  (4) 

 

But, in order to analyze fractal-order scaling 

(with moment of order 𝑞 ≠ 1, 𝑞 ∈ 𝑅) of a 

multifractal series, the diffusion entropy has to 
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be replaced with its generalized entropy 

analogue called q-Rényi entropy which is 

defined as: 

  𝑆𝑞 (𝑙)  =
1

1−𝑞
𝑙𝑜𝑔 ∑  [𝑃(𝑚, 𝑙)]𝑞

𝑚    (5) 

 

The scaling exponent 𝜏(𝑞) can be calculated 

from the linear regression of 𝑆𝑞(𝑙, 𝑡)[𝜏(𝑞)𝑙𝑜𝑔𝑙] 

from the relation:  

𝑆𝑞(𝑙, 𝑡) = 𝐾𝑞(𝑡) + 𝜏(𝑞)𝑙𝑜𝑔𝑙  (6) 

 

Where, 𝐾𝑞 is a 𝑙-independent constant. If a 

discrete time-series such as {𝑥(𝑚)}𝑚=1
𝜁

 is taken 

and dividing the whole domain of 𝑥(𝑚)’s into 

definite regions, where each 𝑥(𝑚) are acquired 

from measurements at times, say 𝑡(𝑚), with an 

equidistant lag 𝑙, then for every region, the 

probability scales as P(𝑖, 𝑙) ∝ 𝑙𝛼𝑖. Here the 

scaling exponents 𝛼𝑖 are called as the 

singularity or Lipschitz-Hölder exponents.  

 

The 𝑓(𝛼)is known as the multifractal spectrum 

which represents the fractal dimension 𝑓 of the 

set of points that corresponds to a Lipschitz-

Hölder exponent 𝛼. If we consider the two 

conjugate pairs {𝑓(𝛼), 𝛼} and {𝜏(𝑞), 𝑞}, then 

the Legendre transform between them yields:  

𝜏(𝑞) = 𝑞𝛼(𝑞)– 𝑓(𝛼(𝑞))  (7) 

 

In other words, 𝛼(𝑞) is that value of the 

Lipschitz-Hölder exponent, which maximizes 
[𝑞𝛼– 𝑓(𝛼)]for a given 𝑞.  

 

Also, the generalized q-order self-similar 

exponent 𝐻𝑞 can be expressed by the relation: 

𝑞𝐻𝑞 = 𝜏(𝑞) + 1   (8) 

 

The detailed derivation of various mathematical 
expressions recalled here is outside the purview of 

the current study and the reader is referred to the 
articles of Scafetta and Grigolini as well as Jizba 

and Korbel and references therein [14, 19, 21]. 
 

RESULTS 
In the present study, diffusion entropy method 
has been used for the identification of 

intermittency of magnetospheric proxies, 
which display multifractal features of 

magnetosphere during disturbance as well as 

calm times, focusing mainly on auroral indices 
(AE, AU and AL) and PC index. The MF-DEA 

method mainly relies on the fluctuation 
collection algorithm and optimized binning of 

the fluctuations at different scales. Figure 1 
shows the fluctuations of 1 min AE index 

during a sample disturbance period (a period of 
strong geomagnetic storm on August 10–14, 

(2000) collected at different scales. 

 
Fig. 1: Magnitude of Scaled Fluctuations of AE Index against Points of the Time Series with Lowest 

Scale is 22 and Highest Scale is 29. The Sample Event Considered Here is the Geomagnetic 

Disturbance Period during August 10–14 (2000). 
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Fig. 2: Frequency Histograms Corresponding to the Scales 22 to 29 Shown in Figure 1. 
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Fig. 3: Probabilities Computed from the Frequency Histograms of Figure 2. 
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Fig. 4: Diffusion Entropy versus Scale for q in the Range of 0 and 8 for AE Index  

during August 10–14 (2000). 

 

 
Fig. 5: Variation of Mass Exponent Spectrum of AE Index during Quiet and Storm Periods. 
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Fig. 6: The Changes in Diffusion Entropy for q=1 Taking AE, AU, AL and PC Indices. The Δt Values 

Considered are 1, 60, 120, 1440. 

 

 
Fig. 7: “The Changes in Diffusion Entropy for q=2 Taking AE, AU, AL and PC Indices. The Δt 

Values Considered are 1, 60, 120, 1440”. 
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Fig. 8: The Mass Exponent Spectra of AE, AU, AL and PC for Δt values 1, 60, 120, 1440. 

 

 
Fig. 9: The Variogram of AE, AU, AL and PC for Δt Values 1, 60, 120, 1440. 
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Similarly, the fluctuations of other auroral 

indices at both disturbance and calm periods 

can also be collected in the same procedure. 

Frequency histograms of fluctuations collected 

from AE index at scales 22 to 29 are shown in 

Figure 2. Figure 3 shows probabilities 

computed from the frequency histograms for 

AE index. Diffusion entropy curves against 

scales for 𝑞 in the range 0 to 8 for AE index are 

shown in Figure 4. Now for a comparison in the 

variation of mass exponent spectra, in Figure 5, 

the curves during storm and calm times have 

been shown. 

 

As evident from the Figure 5, the mass 

exponent spectrum varies drastically between 

calm and disturbance times. The width of the 

spectrum (as defined by the maximum and 

minimum values of 𝜏) increases significantly 

during disturbance times. This clearly shows 

that MF-DEA successfully tracks the variation 

of magnetospheric dynamics during calm and 

disturbance times. The results go well with the 

earlier results of Uritsky and Pudovkin as well 

as Rypdal and Rypdal who gave evidence 

suggesting that the behavior of AE and solar 

wind quantities is not just self-similar but 

multifractal [20, 22].  

 

Now, if a new time series is created based on 

differencing of the original time series over a 

range of temporal scales ∆𝑡 such that 

𝛿𝑥(𝑡, ∆𝑡) = 𝑥(𝑡 + ∆𝑡) − 𝑥(𝑡), it will capture 

fluctuations on temporal scale ∆𝑡 [23]. The 

differencing is performed only if both 𝑥(𝑡 +
∆𝑡) and 𝑥(𝑡) exist and are separated by time 

interval ∆𝑡. For q=1 and 2, we consider four ∆𝑡 

values such as 1, 60, 120 and 1440 

corresponding to 1 min, 1 h, 2 h and 1 day. 

Figures 6 and 7 represent the scaling of auroral 

and polar cap indices for the geomagnetic storm 

time which clearly indicate that multifractality 

reduces for ∆𝑡 =120 and the series almost turns 

monofractal for ∆𝑡 =1440. 

 

Figure 8 shows the variation of corresponding 

variations in the mass exponent spectra of AE, 

AU, AL and PC index. Here also, consistent 

with previous studies, self-similar scaling in the 

geomagnetic indices on timescales shorter than 

1–2 h, that is, shorter than the characteristic 

substorm timescale has been found [24–26]. 

The proper choice of temporal scales could thus 

naturally includes/excludes substorm 

characteristics from magnetic storm features. 

Figure 9 shows the variogram of AE, AU, AL 

and PC indices where it is evident that the slope 

varies with scaling regions. 

 

CONCLUSION 
A novel method called MF-DEA has been used 
for the identification of scaling, self-similarity 
and multifractality. MF-DEA approach reveals 
the multifractal characteristics of magnetosphere 
during geomagnetic disturbance times and calm 
times. The study shows that diffusion entropy 
could successfully identify the dynamical 
fingerprints during geomagnetically disturbance 
periods and calm periods. The diffusion entropy 
analysis shows that there exists a completely 
different scaling in auroral and PC indices while 
comparing ranges of the order of one day or 
more with substorm time scales (<120 min). The 
magnetospheric plasma system is strongly 
coupled externally to the solar wind plasma flow 
revealing dissipative internal non-equilibrium 
and nonlinear dynamics. Until now, main theme 
of magnetospheric dynamics remains the 
development of magnetospheric superstorms 
during which, strong plasma flows can be 
developed along the magnetotail. The response 
of the earth’s magnetosphere to the solar wind 
illuminates the interplay between intrinsic 
magnetospheric dynamics and solar wind-
magnetosphere coupling. In the context of 
intermittent analysis, diffusion entropy based 
studies provide a simple yet unifying way to 
quantify this behavior.  
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