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Abstract 
The present study aims at the elastic analysis of rotating cylindrical pressure vessels made of 

functionally graded materials (FGMs), by element based gradation. Material properties of the 

shells vary in radial direction according to exponential distribution law. Ceramic-metal and 

metal-ceramic, both the types of FGM are considered and the effects of gradation of material 

properties on stress and deformation behavior of the shells are investigated. Further, a 

comparison of deformation and stresses for different values of thickness parameters in 

ceramic-metal and metal-ceramic shell is made. Results obtained show that there is a 

significant variation in stresses and deformation behavior of the FGM shells for different 

values of thickness parameter.  
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INTRODUCTION 
Functionally graded materials (FGMs) are 

special composite materials that have 

continuous and smooth spatial variations of 

physical and mechanical properties. The 

gradation of material properties in FGMs is 

achieved by varying the volume fractions of 

the constituents. Functionally graded shells are 

widely used in space vehicles, aircrafts, 

nuclear power plants and many other 

engineering applications [1]. The total stresses 

due to internal pressure and centrifugal load 

have effects on their strength and safety. Thus, 

control and optimization of total stresses and 

displacement fields is an important task, which 

is achieved by varying the material property in 

FGM pressure vessels. 

 

Many researchers have worked on elastic 

analysis of rotating conical shells, cylindrical 

shells, disks etc. by analytical as well as 

approximate methods such as finite element 

method. Tutuncu et al. reported closed form 

solution for stresses and displacements in 

functionally graded cylindrical and spherical 

vessels subjected to internal pressure, using 

the infinitesimal theory of elasticity [2]. The 

material stiffness obeying a power law is 

assumed to vary through the wall thickness 

and Poisson’s ratio is assumed constant. 

Abrinia et al. have analyzed FGM thick 

cylinders under combined pressure and 

temperature loading [3]. Nejad et al. reported 

work on stresses analysis in isotropic rotating 

thick-walled cylindrical pressure vessels made 

of functionally graded materials [4]. The 

pressure, inner radius and outer radius are 

considered constant. Material properties are 

considered as a function of the radius of the 

cylinder to a power law function and the 

Poisson’s ratio is assumed as constant.  

 

Finite element method based on Rayleigh-Ritz 

energy formulation is applied to obtain the 

elastic behavior of functionally graded thick 

truncated conical shell by Asemi et al. [5]. 

Using this method, the effects of semi-vertex 

angle of the cone and the power law exponent 

on distribution of different types of 

displacements and stresses are considered. In a 

recent work, Sadrabadi et al. studied thick 

walled cylindrical tanks or tubes made of 

functionally graded material, under internal 

pressure and temperature gradient [6]. 
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Material parameters have been considered as 

power functions. Ghannad et al. worked on 

elastic analysis of pressurized thick cylindrical 

shells with variable thickness made of 

functionally graded materials [7].  

 

Nejad et al. have performed a semi analytical 

approach using first-order shear deformation 

theory (FSDT), matched asymptotic method 

(MAM) and multilayer method (MLM), for 

the purpose of elastic analysis of rotating thick 

truncated conical shells made of functionally 

graded materials (FGMs) [1, 8, 9]. The cone 

has finite length, and it is subjected to 

axisymmetric hydrostatic internal pressure. 

The inner surface of the cone is pure ceramic 

and the outer surface is pure metal, and the 

material composition varies continuously 

along its thickness. 

 

In present research work, hollow rotating 

cylindrical pressure vessels subjected to 

internal pressure are analyzed. Governing 

equations are derived by principle of 

stationary total potential. The shells are made 

of functionally graded material of aluminum 

metal and zirconia ceramic. Functional 

gradation of the material properties is done by 

exponential law using element-based 

gradation. 

 

The work aims at investigating the effects of 

functional gradation of the material properties 

on the deformation and stresses behavior of 

the shells for both, ceramic-metal and metal-

ceramic FGM. Further, the effect of thickness 

parameter is also found out and presented in 

the form of graph for some numerical 

problems. 

 

MATERIAL MODELING 
Young’s modulus and density of the disk are 

assumed to vary exponentially along radial 

direction as [10]: 
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E(r) and ρ(r) are modulus of elasticity and 

density at radius r; EA, EB and ρA, ρB are 

modulus of elasticity and density at the inner 

and outer radius respectively.  

 

FINITE ELEMENT MODELING  
The rotating cylinders are modeled as a plane 

strain axisymmetric problem (Figure 1). The 

element displacement vector {φ} can be 

obtained as:  

      
T

u v N  
       (7) 

 

Where, [N] is the matrix of shape functions 

and {δ} is nodal displacement vector. For 

quadratic quadrilateral element, [N] and {δ} 

are given as:  
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Fig. 1: Cylindrical Geometry and Stresses on 

a Cylindrical Element. 

 

In natural co-ordinates (ξ-η), the shape 

functions are given as [11]: 
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The strain components are related to elemental displacement components as [11]: 
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Where, εr, εθ, εz and ϒrz are radial, tangential, axial and shear strain respectively. By transforming the 

global co-ordinates into natural co-ordinates (ξ-η), 
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The above elemental strain-displacement relationships can be written as: 
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e
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Where [B] is strain-displacement relationship matrix, which contains derivatives of shape functions. 

For a quadratic quadrilateral element, it is calculated as: 
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Where, J is the Jacobian matrix, used to transform the global co-ordinates into natural co-ordinates. It 

is given as: 
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From Hooks law, components of stresses in radial, circumferential and axial directions are related to 

components of total strain as: 
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By solving above equations, stress strain relationship can be obtained as follows: 
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Similarly, axial and circumferential stresses can also be obtained.  

In standard finite element matrix notation, above stress strain relations can be written as: 

     D r                           (18) 
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Where,  
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Upon rotation, the shell experiences a body force which under constrained boundary, results in 

deformation and stores internal strain energy U. 
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The work potential due to body and surface forces, resulting from centrifugal action and internal 

pressure is given by: 
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Upon substituting Eqs. (12) and (18) in Eqs. (19) and (20); the elemental strain energy and work 

potential are given by: 
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For a cylindrical shell rotating at ω rad/sec and subjected to internal pressure P, the body and surface 

force vectors for each element are given as: 

 
  2

0
v

r r
q

  
  
   

 
0

x

sq
P 

  
   

 

The total potential of the element is obtained from Eqs. (21) and (22) as: 
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Here, defining element stiffness matrix [K]
e
 and element load vector {f}

e
 as: 
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In FEM, the functional grading is popularly 

carried out by assigning the average material 

properties over a given geometry followed by 

adhering the geometries thus resulting into 

layered functional grading of material 

properties. The downside of this approach is 

that it yields singular field variable values at 

the boundaries of the glued geometries. To get 

better results, it is an established practice to 

divide the total geometry into very fine 

geometries. However, a better approach is to 

assign the average material properties to the 

elements of mesh of the single geometry.  

 

This is, in other words, better described as 

assigning material properties to the finite 

elements instead of geometry. In Eq. (18), the 

[D(r)] matrix, being a function of r, is 

calculated numerically at each node and this 

results into continuous material property 

variation throughout the geometry. The 

element matrices are then assembled to yield 

the global stiffness matrix and global load 

vector respectively. The element based 

grading of material property yields an 

appropriate approach of functional grading as 

the shape functions in the elemental 

formulations being co-ordinate functions make 

it easier to implement the same [12]. 
8
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Where ϕ
e
 is element material property, ϕi is 

material property at node i and Ni is the shape 

function. 

 Total potential energy of the shell is given by: 
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Where, 
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N= No. of elements. 

 

Using the principle of stationary total potential 

(PSTP), the total potential is set to be 

stationary with respect to small variation in the 

nodal degree of freedom, that is: 
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From above, the system of simultaneous 

equations is obtained as follows: 
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RESULTS AND DISCUSSION 
Validation 
To validate the current work, problems 

referred by Tutuncu and Ozturk are 

reconsidered and two types of material models 

are analyzed [2]. Following equations are used 

for material modelling in the said 

reference [2]: 
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Where, V is the volume fraction, E is young’s 

modulus and ν is Poisson’s ratio, subscript ‘m’ 

refers to metal and ‘c’ refers to ceramic. x is 

non-dimensional radius that is r/a and k is the 

ratio of outer diameter to inner diameter.  

 

In model 1, Poisson’s ratio is taken constant 

(0.333) and young’s modulus varies according 

to Eq. (32) taking n=1; while in model 2, both 

Poisson’s ratio and young’s modulus vary 

according to Eqs. (31) and (32) taking n=k=2. 

Material properties of the metal and ceramic 

used are: Em=200 GPa, Ec=360 GPa, νm=0.333, 

νc=0.2 and the vessels are subjected to unit 

internal pressure that is 1 GPa (Figure 2). 

 

 
Fig. 2: Validation of the Work. 
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Numerical Results 

In this section, some numerical problems of 

rotating FGM cylindrical pressure vessels are 

analyzed and the effect of thickness parameter 

b/a on stress and deformation states is found 

out. Shells have same geometric parameters as 

above and rotating with an angular velocity of 

200 rad/s, subjected to unit internal pressure. 

Material is modelled by exponential law as 

discussed in previous section, for which 

properties used are as [13]: 

Em=70 GPa, Ec=151 GPa, and ν=0.3. 

 

Figures 3–6 show the distribution of radial 

displacement, radial stress, circumferential 

stress and von Mises stress respectively along 

radial direction for ceramic-metal FGM shells 

while Figures 7–10 show the same for metal-

ceramic shells. From Figure 3 and 7, it can be 

seen that FGM shell having b/a=2 has 

maximum radial displacement and the FGM 

shell having b/a=3 has minimum radial 

displacement. Radial displacement decreases 

with increase in b/a ratio. It is minimum at the 

outer radius and maximum at the inner radius 

for all the shells. By comparing both, the 

ceramic-metal and metal-ceramic FGM, it is 

observed that ceramic-metal shell having 

b/a=3, has least radial displacement. 

 

It is observed that radial stress is maximum 

that is equal to applied internal pressure at 

inner radius and minimum equals to 0 at outer 

radius. It is also observed that here the effect 

of rotation is negligible as compared to applied 

internal pressure; and radial stresses are 

complete compressive stresses. It decreases 

with increase in b/a. Circumferential stress is 

complete positive, means tensile in nature. It is 

least for b/a=3 and maximum for b/a=2. 

 

Circumferential stress is maximum at inner 

radius and minimum at outer radius for all 

values of b/a. von Mises stress is also 

maximum at inner radius and minimum at 

outer radius having same distribution as 

circumferential stress in both metal-ceramic and 

ceramic-metal FGM. Metal-ceramic FGM shell 

having b/a=3 has the least von Mises stress.

 

  
Fig. 3: Radial Displacement Distribution 

(Ceramic-Metal FGM). 

Fig. 4: Radial Stress Distribution (Ceramic-

Metal FGM). 

 

  
Fig. 5: Circumferential Stress Distribution 

(Ceramic-Metal FGM). 

Fig. 6: von Mises Stress Distribution (Ceramic-

Metal FGM). 



Stress Analysis of Rotating FGM Cylindrical Pressure Vessel                                                            Thawait A.K. 

 

 

RRJoPHY (2016) 7-15 © STM Journals 2016. All Rights Reserved                                                            Page 14 

  
Fig. 7: Radial Displacement Distribution (Metal-

Ceramic FGM). 

Fig. 8: Radial Stress Distribution (Metal-

Ceramic FGM). 

 

  
Fig. 9: Circumferential Stress Distribution 

(Metal-Ceramic FGM). 

Fig. 10: von Mises Stress Distribution (Metal-

Ceramic FGM). 

 

By comparing all the stresses, it is observed 

that von Mises stress is maximum as compared 

to radial and circumferential stress. Therefore, 

von Mises stress should be taken as limit stress 

criteria for rotating cylindrical pressure 

vessels. 

 

CONCLUSION 
The present work proposes a study of rotating 

FGM cylindrical pressure vessel using element 

based material gradation. Functional gradation 

of the material properties is achieved by 

exponential law. Material properties of 

aluminum metal and zirconia ceramic are used 

and metal-ceramic as well as ceramic-metal, 

both the types of FGM are considered. 

Principle of stationary total potential (PSTP) is 

used to derive the governing equation. The 

results obtained show that stresses and 

deformation decreases with increasing b/a 

ratio in both, the ceramic-metal and metal-

ceramic FGM. 

 

REFERENCES 
1. Nejad MZ, Jabbari M, Ghannad M. Elastic 

Analysis of FGM Rotating Thick 

Truncated Conical Shells with Axially-

Varying Properties under Non-Uniform 

Pressure Loading. Compos Struct. 2015; 

122: 561–569p. 

2. Tutuncu N, Ozturk M. Exact Solutions for 

Stresses in Functionally Graded Pressure 

Vessels. Compos Part B. 2001; 32: 683–

686p.  

3. Abrinia K, Naee H, Sadeghi F, et al. New 

Analysis for the FGM Thick Cylinders 

under Combined Pressure and 

Temperature Loading. Am J Appl Sci. 

2008; 5(7): 852–859p. 

4. Nejad MZ, Rahimi GH. Elastic Analysis 

of FGM Rotating Cylindrical Pressure 

Vessel. J Chinese Inst Engrs. 2010; 33(4): 

525–530p. 

5. Asemi K, Akhlaghi M, Salehi M, et al. 

Analysis of Functionally Graded Thick 

Truncated Cone with Finite Length under 

Hydrostatic Internal Pressure. Arch Appl 

Mech. 2011; 81: 1063–1074p. 

6. Sadrabadi SA, Rahimi GH. Yield Onset of 

Thermo-Mechanical Loading of FGM 

Thick Walled Cylindrical Pressure 

Vessels. International Journal of 

Mechanical, Aerospace, Industrial, 



Research and Reviews: Journal of Physics 

Volume 5, Issue 3 

ISSN: 2278–2265(online), ISSN: 2347-9973(print) 

 

RRJoPHY (2016) 7-15 © STM Journals 2016. All Rights Reserved                                                            Page 15 

Mechatronic and Manufacturing 

Engineering. 2014; 8(7): 1325–1329p. 

7. Ghannad M, Rahimi GH, Nejad MZ. 

Elastic Analysis of Pressurized Thick 

Cylindrical Shells with Variable Thickness 

made of Functionally Graded Materials. 

Composites: Part B. 2013; 45: 388–396p. 

8. Nejad MZ, Jabbari M, Ghannad M. Elastic 

Analysis of Rotating Thick Truncated 

Conical Shells Subjected to Uniform 

Pressure Using Disk Form Multilayers. 

ISRN Mech Eng. 2014; 2014: 1-10. 

9. Nejad MZ, Jabbari M, Ghannad M. A 

Semi Analytical Solution of Thick 

Truncated Cones using Matched 

Asymptotic Method and Disk form 

Multilayers. Arch Mech Eng. 2014; 61: 

495–513p. 

10. Afsar AM, Go J. Finite Element Analysis 

of Thermoelastic Field in a Rotating FGM 

Circular Disk. Appl Math Model. 2010; 

34: 3309–3320p. 

11. Seshu P. A Text Book of Finite Element 

Analysis. PHI Learning Pvt. Ltd.; 2003. 

12. Kim JH, Paulino GH. Isoparametric 

Graded Finite Elements for 

Nonhomogeneous Isotropic and 

Orthotropic Materials. ASME J Appl 

Mech. 2002; 69: 502–514p.  

13. Bayat M, Saleem M, Sahari BB, et al. 

Mechanical and Thermal Stresses in a 

Functionally Graded Rotating Disk with 

Variable Thickness due to Radially 

Symmetry Loads. Int J Pres Ves Pip. 

2009; 86: 357–372p. 

 

 

Cite this Article 

Amit Kumar Thawait. Stress Analysis 

of Rotating Cylindrical Pressure Vessel 

of Functionally Graded Material by 

Element Based Material Gradation. 

Research & Reviews: Journal of 

Physics. 2016; 5(3): 7–15p. 


