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Abstract 
Numerical computations of strength and stability of copper in case of (100) loading are 

carried out by taking new embedded atom method (EAM). New EAM contains three 

adjustable parameters and four unknown parameters, which have calculated using 

experimental values of lattice constant, second order elastic constants. Computed value of 

theoretical strength of Cu is same order in magnitude of the results of other investigators. 

Second unstable phase found in compression. 
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INTRODUCTION 
Calculations of theoretical strength of cubic 

metals have been active field in research. 

Many workers have been calculated theoretical 

strength of cubic metals in various modes of 

deformations by taking various types of 

interaction between atoms [1–16]. The ideal 

(theoretical) strength was originally defined as 

stress or strain at which perfect crystal lattice 

became mechanically unstable with respect to 

arbitrary homogeneous infinitesimal 

deformation. Many applications of this problem 

are presents in literature. Cerney and coworkers 

studied mechanical stability of cubic metals 

(Ni, Ir, Fe, Cr) in hydrostatic loading and 

uniaxial loading using simulation technique 

[17–23]. Based on Born-Hill-Milstein elastic 

stability theory Ho et al. investigates the effect 

of transverse loading on ideal tensile strength 

of six FCC materials using molecular statics 

and density function theory simulation [24]. 

Recently Mouhat et al. gives necessary and 

sufficient stability conditions for noncubic and 

lower symmetry classes crystals and Ogata et 

al. gives review article on this topic [25, 26]. 
 

Recently by taking embedded atom method 

(EAM), many workers have estimated 

theoretical strength and stability of cubic metal 

in various loading conditions [1–5]. In this 

paper, we developed new EAM which contain 

three adjustable parameters and four unknown 

parameters. Potential parameters of this EAM 

have been calculated using experimental 

values of lattice constant and second order 

elastic constants as an input data. We have 

estimated strength of Cu in (100) loading 

using this analytic EAM. 

 

EMBEDDED ATOM METHOD 
The original method was subsequently 

expended by Bakes to treat solids with highly 

directional distributions of valance electron 

densities that is, covalent bonding, allowing 

for much more wider scope of applications 

[27]. The fundamentals of the method have 

been discussed in the literature in detail (see 

for example review [28]), so only some 

important aspects necessary for discussion of 

the present work will be given here. In the 

EAM format, the cohesive energy per atom Ea 

of a homogeneous monatomic crystal can be 

written as 

𝐸𝑎  =  F (ρ) + 
1

2
∑ ∅(𝑟𝑖𝑗)                       (1) 

 

With 

𝜌 =  ∑ 𝑓(𝑟𝑖𝑗)                                         (2) 
 

where, F() is the embedded function,  is the 

total electron density at the reference atomic 

site, (rij) is the electron density function, (rij) 

is the pair potential function, and rij is the 

distance between atoms i and j. From review 

of literature, we conclude that many type of 

functions have been used for (r), (r) and 
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F(). Here, we have used generalized Morse 

potential function for pair interaction, 

∅(𝑟) =
𝐷

(𝑞−1)
[exp{−𝑞𝛼(𝑟 − 𝑟0)} −

𝑞𝑒𝑥𝑝{−𝛼(𝑟 − 𝑟0)}]                              (3) 
 

𝐹(𝜌) =  −𝐺 𝜌𝑒 = 𝐺𝑢𝑖,                          (4) 
 

for embedded energy and  𝑓(𝑟) =
1

𝑟𝑠  for 

density function. 
 

In these functions q, e, and s are adjustable 

parameters and D, , r0, and G are unknown 

potential parameters, which can be evaluated by 

taking the experimental values of lattice 

constant a0 and second order elastic constants 

C11, C12, and C44. Since in this EAM, three 

adjustable parameters q, s and e are present. So 

by taking different values of these adjustable 

parameters we can found deeper long-range 

potential and shallower short-range potential. 

 

Potential Parameters  

Force at equilibrium gives 

𝐺 = −
1

2
[

𝑊1

𝑊2
]

𝑎𝑡 𝑎=𝑎0

                                 (5) 

Where 

𝑊1 = ∑ 𝐿0 ∅′

𝑙1,𝑙2,𝑙3

 

 

𝑊2 = 𝑢𝑖
′ ∑ 𝐿0 𝑓′

𝑙1,𝑙2,𝑙3

 

 

𝑢𝑖
′ = −𝑒𝜌(𝑒−1) 

 

𝐿0 = (𝑙1
2 + 𝑙2

2 + 𝑙3
2) 

Where prime on potential and density function 

represent differentiation of function with 

respect to r
2
. However, the prime on embedded 

function shows the differentiation of function 

with respect to density function (). 
 

We can write equation of second order elastic 

constant C11, C12 and C44 in simplified form as 

𝐶11 = 𝐴𝑋1 + 𝐵𝑋2                                   (6) 
 

Where, 

𝑋1 =
𝑢𝑎0

8
[(∑ 𝑙1

4
𝑙1,𝑙2,𝑙3

𝜙11
″ ) −

(𝑢𝑖
′ ∑ 𝐿0𝑙1,𝑙2,𝑙3

𝑓′)
−1

(∑ 𝐿0𝑙1,𝑙2,𝑙3
𝜙11

′ )𝑅]    (7) 

 

  𝑋2 =
𝑢𝑎0

8
[(∑ 𝑙1

4
𝑙1,𝑙2,𝑙3

𝜙12
″ ) −

(𝑢𝑖
′ ∑ 𝐿0𝑙1,𝑙2,𝑙3

𝑓′)
−1

(∑ 𝐿0𝑙1,𝑙2,𝑙3
𝜙12

′ )𝑅]  (8) 

With 

𝑅 = 𝑢𝑖
″(∑ 𝑙1

2
𝑙1,𝑙2,𝑙3

𝑓′)
2

+ 𝑢𝑖
′(∑ 𝑙1

4
𝑙1,𝑙2,𝑙3

𝑓″) (9) 
 

𝐶12 = 𝐴𝑋3 + 𝐵𝑋4                                   (10) 
 

Where 

𝑋3 =
𝑢𝑎0

8
[(∑ 𝑙1

2𝑙2
2

𝑙1,𝑙2,𝑙3
𝜙11

″ ) −

(𝑢𝑖
′ ∑ 𝐿0𝑙1,𝑙2,𝑙3

𝑓′)
−1

(∑ 𝐿0𝑙1,𝑙2,𝑙3
𝜙11

′ )𝑆]   (11) 

 

  𝑋4 =
𝑢𝑎0

8
[(∑ 𝑙1

2𝑙2
2

𝑙1,𝑙2,𝑙3
𝜙12

″ ) −

(𝑢𝑖
′ ∑ 𝐿0𝑙1,𝑙2,𝑙3

𝑓′)
−1

(∑ 𝐿0𝑙1,𝑙2,𝑙3
𝜙12

′ )𝑆]    (12) 

 

With 

𝑆 = 𝑢𝑖
″(∑ 𝑙1

2
𝑙1,𝑙2,𝑙3

𝑓′)(∑ 𝑙2
2

𝑙1,𝑙2,𝑙3
𝑓′) +

𝑢𝑖
′(∑ 𝑙1

2𝑙2
2

𝑙1,𝑙2,𝑙3
𝑓″)                                  (13) 

 

𝐶44 = 𝐴𝑋5 + 𝐵𝑋6                                  (14) 
 

Where 

𝑋5 =
𝑢𝑎0

8
[(∑ 𝑙2

2𝑙3
2

𝑙1,𝑙2,𝑙3
𝜙11

″ ) −

(∑ 𝐿0𝑙1,𝑙2,𝑙3
𝑓′)

−1
(∑ 𝐿0𝑙1,𝑙2,𝑙3

𝜙11
′ )𝑇]       (15) 

 

  𝑋6 =
𝑢𝑎0

8
[(∑ 𝑙2

2𝑙3
2

𝑙1,𝑙2,𝑙3
𝜙12

″ ) −

(∑ 𝐿0𝑙1,𝑙2,𝑙3
𝑓′)

−1
(∑ 𝐿0𝑙1,𝑙2,𝑙3

𝜙12
′ )𝑇]       (16) 

 

With 

𝑇 = (∑ 𝑙2
2𝑙3

2
𝑙1,𝑙2,𝑙3

𝑓″)                         (17) 

Where 

𝐴 =
𝐷

(𝑞−1)
[exp(𝑞𝛼𝑟0)], 

 

𝐵 =
𝐷𝑞

(𝑞−1)
[exp (𝛼𝑟0)]   

 

𝜙11(𝑟) = exp (−𝑞𝛼𝑟)   
 

and 
 

𝜙12(𝑟) = −exp (−𝛼𝑟)  
 

Using simple mathematics, we can write,  
 

𝑟0 =
1

𝛼(𝑞−1)
 𝑙𝑜𝑔 [

𝑞(𝐶44𝑋4−𝐶12𝑋6)

(𝐶12𝑋5−𝐶44𝑋3)
]             (18) 

and  

𝐷 =
(𝑞−1)𝐶12

{exp(𝑞𝛼𝑟0)𝑋3+𝑞exp (𝛼𝑟0)𝑋4}
                 (19) 

 

where, u shows, number of atoms per unit cell. 

For the known value of α, evaluate X1, X2, X3, 

X4, X5 and X6 from Eqs. (7), (8), (11), (12), 

(15) and (16) and then calculate r0 and D with 

the help of Eqs. (18) and (19). If the value of 



Research & Reviews: Journal of Physics  

Volume 5, Issue 3 

ISSN: 2278-2265(online), ISSN: 2347-9973(print) 

 

RRJoPHY (2016) 28-35 © STM Journals 2016. All Rights Reserved                                                          Page 30 

α, r0 and D satisfied equation of C11 (i.e., 

Eq. (6) then these values of α, r0 and D are the 

solution of Eqs. (6), (10) and (14). But if these 

values are not satisfied Eq. (6) then take another 

value of known α, the same procedure follows 

until Eq. (6) is satisfied for the values of α, r0 

and D, which is the required solution of Eqs. 

(6), (10) and (14). By using these values of α, r0 

and D, we can evaluate G from Eq. (5). 

 

The selection of adjustable parameters are 

such that the potential gives the accurate value 

of theoretical strength (i.e., calculated value of 

strength is close with experimental result). 

Table 1 gives experimental values of lattice 

constant (a0) and second order elastic constants 

of Copper as an input data [29]. In this process 

the cut off distance is taken to be rcut = 1.65 a0 

as used by Cifti et al. [2]. 

 

Table 1: Input Data for Copper. 

Lattice 

constant 

C11 (x1012 

dyne/cm2) 

C12 (x1012 

dyne/cm2) 

C44 (x1012 

dyne/cm2) 

3.6153 Å 1.762 1.249 .818 

 

Stability Criteria 

Stability condition in EAM framework (as 

mentioned by Cifti et al. [2]). 

B55 >0 

B44 >0 

B22 > 0 

B23 > 0 

(𝐵22
2 − 𝐵23

2 ) > 0 

 

𝐵22(𝐵22 + 𝐵23) − 2(𝐵12)2 > 0 

Where, 𝐵𝑖𝑗 =
𝜕2𝐸

𝜕𝑎𝑖𝜕𝑎𝑗
 

For the brevity of notation (𝐵22
2 − 𝐵23

2 ) and 

𝐵22(𝐵22 + 𝐵23) − 2(𝐵12)2 be supposed as 

ab3 and ab2, respectively. 

 

By using simple mathematics, we can write all 

Fi and all Bij as [2, 30, 31];  

𝐹𝑖 =
𝑢𝑎𝑖

𝑎𝑗𝑎𝑘
[𝐹′{∑ 𝑙𝑖

2𝑓′} +
1

2
∑ 𝑙𝑖

2 𝜙′]  

 

𝐵11 = 𝑢 [
𝑎1

2

4
𝐹"{∑ 𝑙1

2𝑓′}2 +
𝑎1

2

4
𝐹′{∑ 𝑙1

4𝑓"} +

1

2
𝐹′{∑ 𝑙1

2𝑓′} +
𝑎1

2

8
{∑ 𝑙1

4𝜙"} +
1

4
{∑ 𝑙1

2𝜙′}]  

𝐵22 = 𝑢 [
𝑎2

2

4
𝐹"{∑ 𝑙2

2𝑓′}2 +
𝑎2

2

4
𝐹′{∑ 𝑙2

4𝑓"} +

1

2
𝐹′{∑ 𝑙2

2𝑓′} +
𝑎2

2

8
{∑ 𝑙2

4𝜙"} +
1

4
{∑ 𝑙2

2𝜙′}]  

 

𝐵12 = 𝑢 [
𝑎1𝑎2

4
𝐹"{∑ 𝑙1

2𝑓′}{∑ 𝑙2
2𝑓′} +

𝑎1𝑎2

4
𝐹′{∑ 𝑙1

2𝑙2
2𝑓"} +

𝑎1𝑎2

8
{∑ 𝑙1

2𝑙2
2𝜙"}]  

 

𝐵23 = 𝑢 [
𝑎2𝑎3

4
𝐹"{∑ 𝑙2

2𝑓′}{∑ 𝑙3
2𝑓′} +

𝑎2𝑎3

4
𝐹′{∑ 𝑙2

2𝑙3
2𝑓"} +

𝑎2𝑎3

8
{∑ 𝑙2

2𝑙3
2𝜙"}]  

 

𝐵44 =
𝑢 𝑎2

2𝑎3
2

4
[𝐹′{∑ 𝑙2

2𝑙3
2𝑓"} +

1

2
{∑ 𝑙2

2𝑙3
2𝜙"}]  

 

𝐵55 =
𝑢 𝑎1

2𝑎3
2

4
[𝐹′{∑ 𝑙1

2𝑙3
2𝑓"} +

1

2
{∑ 𝑙1

2𝑙3
2𝜙"}]  

 

In all these equations  

𝐹′ =
𝜕𝐹

𝜕𝜌
, 𝐹″ =

𝜕2𝐹

𝜕𝜌2 , 𝑓′ =
𝜕𝑓

𝜕𝑟2 , 𝑓″ =

𝜕2𝑓

𝜕(𝑟2)2 , 𝜙′ =
𝜕𝜙

𝜕𝑟2  𝑎𝑛𝑑 𝜙″ =
𝜕2𝜙

𝜕(𝑟2)2  

 

Summations are performed over l1, l2, and l3, 

which all are integer subject to the condition 

that 1 2 3l l l   is even for a FCC lattice. In 

this process same cut off distance is taken as 

used by Cifti et al. [2]. In (100) loading mode 

of deformation, uniaxial force applied 

perpendicular to a cube face, parallel to say the 

edge a1. So for a tensile force, the edge a1 will 

elongate and the edges a2 and a3 will contract; 

by symmetry it is seen that the relation a2=a3 

will be maintained. This method developed by 

Milstein and used by many workers in 

different loading condition. [1–5, 31–33]. 

 

RESULTS AND DISCUSSION 

Figures 1 to 3 show effect of adjustable 

parameters on energy per unit cell. From these 

figures, we can say that for the fixed values of s 

and e, if we increase q the breadth of potential 

increases and depth of potential also increases. 

Further, by increasing the adjustable parameter 

s (for fixed value of adjustable parameter q and 

e) the breadth of potential decreases and depth 

of potential also decreases. If we increase the 

adjustable parameter e (for fixed values of q 

and s), slight change occurs in breadth and 

depth of the potential. 
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Table 2: Calculated Potential Parameters of Cu for Different Values of Adjustable 

Parameters q, s and e. 

Adjustable parameters Unknown parameters 

q s e  D(x10-13) r0(x10-8) G 

2 10 1/20 2.065x108 2.1104 2.7228 1.3605 x10-15 

2 10 1/5 2.0725x108 2.0329 2.7377 1.1329 x10-27 

2 15 ½ 2.249 x108 2.2571 2.7054 2.6784 x10-70 

2 18 ½ 2.3194x108 2.3911 2.6797 7.6111 x10-82 

2 3 ½ 9.475 x107 1.3875 3.9009 1.7594 x10-23 

2 4 1/5 8.874x107 3.5775 3.5352 8.482 x10-18 

2 4 ½ 8.842 x107 3.1575 3.1575 1.7707 x10-27 

6 4 1/5 5.106 x107 1.747 3.4331 8.482 x10-18 

6 10 ½ 5.535 x107 3.6354 3.1718 5.7049 x10-51 
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Fig. 1: Variation of Energy per Unit Cell with Respect to Lattice Constant [a (Å)] for Different 

Values of Adjustable Parameters q, s and e. 
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Fig. 2: Variation of Energy per Unit Cell with Respect to Lattice Constant [a (Å)] for Different 

Values of Adjustable Parameters q, s and e. 
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Fig. 3: Variation of Energy per Unit Cell with Respect to Lattice Constant [a (Å)] for Different 

Values of Adjustable Parameters q, s and e. 
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Fig. 4: Variation of Bij with Respect to a1 for q=2, s=10 and e=1/5 
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Fig. 5:  Variation of ab3, ab2 with Respect to a1 for q=2, s=10 and e=1/5. 
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Fig. 6: Variation of σ1 and Energy per Unit Cell(E) with Respect to a1 for q=2, s=10 and e=1/5. 
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Fig. 7: Variation of a2 with Respect to a1 for q=2, s=10 and e=1/5. 

 

Table 3: Strength of Copper in case of 100 Loading for Different Values of Adjustable 

Parameters q, s and e. 

Adjustable parameters Failure in tension Failure in compression 

q S e a1(Å) 1(Gpa) a1(Å) 1(Gpa) 

2 18 1/2 3.9701 8.623 3.28175 -3.809 

6 10 1/2 4.3942 19.75 2.3452 -39.19 

2 10 1/5 3.95 8.204 3.2853 -3.725 

2 10 1/20 3.9498 8.202 3.2815 -3.7286 
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Figures 4 to 7 show the variation of Bij, its 

functions (i.e., ab3 and ab2), stress (1), 

energy per unit cell (E) and lattice constant 

(a2) of Cu with respect to a1 for fixed values of 

adjustable parameters q=2, s=10 and e=1/5. 

Table 3 represents breaking stress (theoretical 

strength) and a1 {at which the instability 

occur} of copper for different values of 

adjustable parameters q, s and e. 

 

When q=2, s=10 and e=1/5, Figures 5 and 6 

show that the stability condition ab3>0 is 

violated at a1=3.95 Å with stress σ1= 8.204 

GPa in tension and the stability condition 

ab2>0 is violated at a1 = 3.285 Å with stress 

σ1= -3.725 GPa in compression. These results 

give theoretical strength 8.204 GPa at 9.26% 

of strain in tension and -3.725 GPa at 9.14% of 

strain. This value of theoretical strength is 

slightly higher than experimental results but is 

same order of magnitude. Table 3 shows the 

calculated values of breaking stress in tension 

as well as in compression for different values 

of adjustable parameters q, s and e. At a1 =2.8 

Å the stress is maximum (σ1=-.506 GPa) and 

energy is minimum which shows second 

unstable phase. Other investigators have 

calculated theoretical strength recently by 

using EAM approach. [34]. 

 

Milstein et. al. calculated this as 9.8 GPa, Cifti 

et al. calculated this as 5.279 GPa, Cai et al. 

calculated this as 3.3 GPa and recently Zhang 

et al. calculated this as 7.522 GPa by using 

EAM approach which are approximately same 

order of magnitude as our results [1, 2, 4, 34]. 

Difference between experimental results 2.94 

GPa and our results exit due to presence of 

dislocation and imperfection in the 

experimental specimen wire [35]. 

 

CONCLUSIONS  
We developed new analytic EAM for cubic 

metals, which contains only four unknown 

potential parameters. Method for evaluation of 

these potential parameters is simple. Due to 

presence of dislocation and imperfection in the 

experimental specimen wire, ideal strength of 

Cu is not close to experimental results. Our 

results are same order in magnitude of results 

of other workers. 
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