
 

 

 

 

RRJoPHY (2016) 36-47© STM Journals 2016. All Rights Reserved                                                           Page 36 

Research & Reviews: Journal of Physics 
 ISSN: 2278-2265(online), ISSN: 2347-9973(print) 

Volume 5, Issue 3 

www.stmjournals.com 

Free Vibration of Cross-ply Composite Plates by a High-

Order Shear Deformable Finite Element 

 

Mihir Chandra Manna
1,*, Mainak Manna

2 

1
Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering 

Science and Technology, Shibpur, Howrah, West Bengal, India 
2
Department of Computer Science and Technology, Indian Institute of Engineering Science and 

Technology, Shibpur, Howrah, West Bengal, India 

 

Abstract 
Free vibration analysis of composite rectangular plates with different thickness ratios, 

different boundary conditions and different aspect ratios has been investigated using a high-

order shear flexible triangular plate element. The first order shear deformation theory 

(FOSDT) is used to include the effect of transverse shear deformation. The element has 

eighteen nodes on the sides and seven internal nodes. Element geometry is expressed in terms 

of three linear shape functions of area coordinates. The formulation is displacement type. The 

element has seventy-one degrees of freedom, which has been reduced to fifty-seven degrees of 

freedom by Guyan reduction scheme for the degrees of freedom associated with the internal 

nodes. Rotary inertia has been included in the consistent mass matrix. Numerical examples 

are presented to show the accuracy and convergence characteristics of the element.  
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INTRODUCTION 
Thick and thin isotropic and composite plates 

and shells have wide applications in ships, 

aircrafts, bridges, etc. A thorough study of 

their dynamic behavior and characteristics is 

essential to assess and use their full potentials. 

Different techniques like RBF-pseudo-spectral 

method, differential quadrature method, 

boundary characteristic orthogonal 

polynomials and pseudo-spectral method have 

been used in recent years [1–4]. More recently 

Kansa’s nonsymmetric radial basis function 

(RBF) collocation method was applied by 

Ferreira for free vibration analysis of 

Timoshenko beams, Mindlin plates and 

composite plates [5, 6].  

 

Other methods which have been very recently 

used for the aforementioned purposes are 

meshless method and discrete singular 

convolution (DSC) method [7, 8]. Shufrin et 

al. have investigated the free vibration of 

rectangular thick plates with variable thickness 

and different boundary conditions by using the 

extended Kantorovich method [9]. Kang et al. 

have proposed a practical analytical method 

for the free vibration analysis of a simply 

supported rectangular plate with unidirectional 

arbitrary thickness variation [10]. But, since 

early sixties, Finite Element Method (FEM) 

has been proved to be more versatile tool in 

engineering fields [11, 12]. Plate bending is 

one of the first problems where the application 

of finite element was done in the early sixties. 

Initial attempts were made for bending and 

free vibration analyses with Kirchoff’s 

hypothesis which showed a number of 

problems. These are mostly associated with 

the satisfaction of normal slope continuity on 

the interfaces between various elements.  

 

Above-mentioned slope continuity problem 

has been eliminated by applying well-known 

Reissner-Mindlin’s hypothesis for thick plates. 

In Reissner-Mindlin’s hypothesis the 

transverse displacement (w) and rotations of 

normal (x and y) are expressed as 

independent field variables. A large number of 

published works on plate vibration are 

available as may be seen by inspection of the 
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excellent review articles by Leissa and Liew et 

al. and other comprehensive works by Yamada 

and Irie [13–21]. Also, a large number of 

triangular and quadrilateral finite elements 

were developed for analysis of thin as well as 

thick plates among which isoparametric 

elements became more popular [22]. Shear 

locking, stress extrapolation and spurious 

modes are some problems faced by these 

elements instead of having high legacy. To 

avoid the above-mentioned problems a number 

of thick plate bending elements have been 

proposed by many researchers [23–28]. 

Composite structures are weak in shear due to 

low shear modulus compared to extensional 

rigidity. 

 

The present paper utilizes a triangular element 

with eighteen nodes equidistantly placed on 

the sides and seven nodes internal to it. The 

element has five degrees of freedom 

 x yu,v,w,θ ,θ  at the three nodes on the 

vertices (nodes 1, 7 and 13), at six side nodes 

nearer to mid-side nodes (nodes 3, 5, 9, 11, 15 

and 17), three degrees of freedom  x yw,θ ,θ

at three internal nodes (nodes 22–24), two 

degrees of freedom  x yθ ,θ  at midpoint nodes 

(nodes 4, 10 and 16), two degrees of freedom

 u,v at centre node (node 25) and single 

degree of freedom  w  at nine nodes (nodes 

2, 6 8, 12, 14 and 18–21).  

 

The element geometry is described by linear 

shape functions of area coordinates including 

corner nodes only. In the proposed element, 

the in-plane displacements  u,v , the 

transverse displacement field (w) and both x 

and y are expressed by a third order 

polynomial, a fifth order polynomial and a 

fourth order polynomial, respectively.  

 

The nodes are so placed on the sides and 

inside of the proposed element that the mass 

and rotary inertia for the internal nodes are 

negligible and well-known Guyan reduction 

scheme for the mass condensation is 

efficiently utilized to get highly accurate 

natural frequencies of rectangular composite 

plates under different boundary 

conditions [29]. 

FINITE ELEMENT FORMULATION  
The formulation is based on the Reissner-

Mindlin plate theory. In this theory it is 

assumed that the transverse deflection of the 

plate is small compared to the plate thickness 

and the normal to the plate mid surface which 

is taken as the reference plane remain straight 

but may not remain normal to the deformed 

mid surface. Twenty-five noded triangular 

element is used to develop the finite element 

analysis procedure. The element is shown in 

Figure 1.  

 

 
Fig. 1: Proposed Element. 

 

 
Fig. 2: Area Coordinates. 

 

The element has five degrees of freedom 

 x yu,v,w,θ ,θ at nodes 1, 3, 5, 7, 9, 11, 13, 15 

and 17, three degrees of freedom  x yw,θ ,θ  at 

nodes 22, 23 and 24, two degrees of freedom 

 x yθ ,θ at nodes 4, 10 and 16 and two degrees 

of freedom  u,v at node 25 and single degree 

of freedom  w at nodes 2, 6, 8, 12, 14 and 

18–21. 
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The area coordinates (L1, L2, L3) of the nodes are (1, 0, 0), (5/6, 1/6, 0), (2/3, 1/3, 0), (1/2, 1/2, 0), (1/3, 

2/3, 0), (1/6, 5/6, 0), (0, 1, 0), (0, 5/6, 1/6), (0, 2/3, 1/3), (0, 1/2, 1/2), (0, 1/3, 2/3), (0, 1/6, 5/6), (0, 0, 

1), (1/6, 0, 5/6), (1/3, 0, 2/3), (1/2, 0, 1/2), (2/3, 0, 1/3), (5/6, 0, 1/6),  (2/3, 1/6, 1/6),  (1/6, 2/3, 1/6), 

(1/6, 1/6, 2/3), (1/2, 1/4, 1/4), (1/4, 1/2, 1/4), (1/4, 1/4, 1/2)and (1/3, 1/3, 1/3). 

 

The coordinates of any point P (Figure 2) within the element with respect to the global co-ordinate 

system are given by 

1 1 2 2 3 3x L x L x L x    
1 1 2 2 3 3y L y L y L y                                                                                                                            (1) 

 

where, 
i iL = A A, i=1,2,3  and A  is the area of the triangular element. 

Again, 

1 2 31 L L L                                                                                                                               (2) 

 

From Eqs. (1) and (2) we get, 

  2 , 1,2,3i i i iL a b x c y A i   
 

where,        
1

2 3 3 2 3 1 1 3 1 2 2 12
A= x y - x y + x y - x y + x y - x y  

i j k k ja = x y - x y , i j kb = y - y  and i k jc = x - x  where the parameters i, j and k follow cyclic order of 

1, 2 and 3.  

The in-plane displacements  u, v , transverse displacement  w  and the rotations  x yθ and θ of 

the normal are chosen as the complete third-order, fifth-order and fourth-order polynomials of area 

coordinates (L1, L2, L3), respectively and are expressed as follows: 

 

 uv uu L     ,
 uv vv L     ,

 w ww L     ,
 

xy xx L   
   and 

 
xy yy L   

  … 
(3)

  

where,  

   3 3 3 2 2 2 2 2 2

1 2 3 1 2 1 2 2 3 2 3 3 1 3 1 1 2 3uvL L L L L L L L L L L L L L L L L L L

  



5 5 5 4 4 4 4 4 4

1 2 3 1 2 1 2 2 3 2 3 3 1 3 1

3 2 2 3 3 2 2 3 3 2 2 3

1 2 1 2 2 3 2 3 3 1 3 1

3 3 3 2 2 2 2 2 2

1 2 3 2 3 1 3 1 2 1 2 3 2 3 1 3 1 2 ,

wL L L L L L L L L L L L L L L L

L L L L L L L L L L L L

L L L L L L L L L L L L L L L L L L



 

    



4 4 4 3 3 3 3 3 3 2 2

1 2 3 1 2 1 2 2 3 2 3 3 1 3 1 1 2

2 2 2 2 2 2 2

2 3 3 1 1 2 3 2 3 1 3 1 2 ,

xy y
L L L L L L L L L L L L L L L L L L L

L L L L L L L L L L L L L

  

 

   1 2 3 4 5 6 7 8 9 10 ,
T

u          
 

   11 12 13 14 15 16 17 18 19 20 ,
T

v          
 

  



21 22 23 24 25 26 27 28 29 30 31 32 33 34

35 36 37 38 39 40 41 ,

T

w              

      



 

   42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 ,
x

T

               
 and  

   57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 .
y

T

               
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Putting the values of nodal in-plane displacements  u, v , transverse displacements  w , nodal normal 

rotations  x yθ and θ and nodal area coordinates  1 2 3L ,L ,L  in the above Eqs. (3) the values of s 

can be determined as follows: 

    ,uv uu        ,uv vv  
 

    ,w ww      
xy xx     

   
 

and 
   

xy yy     
  or,  

     1
,u uv u


       1

,v uv v


       1
,w w w


     

1

xxy
x  



   
and

   
1

xyy
y  



  
 

or 
 ,u  ,v  ,w  

x


 and 
 

y


may be assembled in a 

single matrix  

 

form as 

     
                                                                                                                      

(4)
 

 

where, 

 
 

   { } { } { } { } { }
x y

T T T T T T

u v w       
,
   { } { } { } { } { } ,

T T T T T T

x yu v w  
 

   1 3 5 7 9 11 13 15 17 25

T

u u u u u u u u u u u
,

   1 3 5 7 9 11 13 15 17 25

T

v v v v v v v v v v v
, 

  



1 2 3 5 6 7 8 9 11 12 13 14 15 17

18 19 20 21 22 23 24

T

w w w w w w w w w w w w w w w

w w w w w w w



, 

   1 3 4 5 7 9 10 11 13 15 16 17 22 23 24

T

x x x x x x x x x x x x x x x x               
 

 

and 

 

 

and hence, the field variables  x yu,v,w,θ and θ  can be expressed in the following manners: 

   1 3 4 5 7 9 10 11 13 15 16 17 22 23 24

T

y y y y y y y y y y y y y y y y               
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 

0 00 000 000

0 00 000 000

0 0 000 000

0 0 00 000

0 0 00 000

xy

xy

uv

uv

w

x

y

N N N N Nu

N N N N Nv

N N N N Nw

N N N N N

N N N N N











  
  
  

    
 

 
 

 
 

      
 

or, 

  

x

y

u

v

w N 





 
 
 
 

 
 
 
                                                                                                                             

(5)

 
 

where 

 
1
,uv uv uvN L


     

1
,w w wN L


     

1

xy xy xy
N L  



    
                                                                                                                       

(6)
 

 

in which 
 

1
,uv


  

1

w




 and 

1

xy



 
  are (1010), (2121) and (1515) matrices, respectively,

uvN
, wN

 and xy
N are row matrices containing 10, 21 and 15 elements, respectively and 0N

, 00N
 

and 000N
 are null matrices of order (110), (121) and (115), respectively. 

 

As rotations of the normal x and y are independent variables and they are not derivatives of w, the 

effect of shear deformation can be easily incorporated as: 

,

,

x xx

y y y

w

w



 

     
   

                                                                                                                           

(7)

 
 

where, x and y are average shear strain over the entire plate thickness and x and y are the total 

rotations of the normal. 

 

The generalized stress-strain relationship may be expressed as 

    D 
                                                                                                                           

(8)
 

In the above equation the generalized stress vector is 

  



T

x y xy

x y xy x y

N N N

M M M Q Q

 

                                                                                       
(9)

 

The generalized strain vector 
 

 in terms of displacement fields is 

 

  



T

x y xy x y

xy xz yz

     

  


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Or, 

   

  

, , , , , ,

, , , ,

T

x y y x x x y y

x y y x x x y y

u v u v

w w

  

   

   

   
                                                                        

(10)
 

and the rigidity matrix  D  is given in details in [30]. 

 

With the help of Eqs. (4) and (5), the strain-displacement relationship may be expressed as 

    B 
                                                                                                                             

(11)
 

where,  B  is a  8×71  matrix and is given by 

 
,

,

, ,

, 0 00 000 000

0 , 00 000 000

, , 00 000 000

0 0 00 000

0 0 00 000

0 0 00

0 0 , 000

0 0 , 000

xxy

yxy

y xxy xy

xy

xy

uv x

uv y

uv y uv x

w x

w y

N N N N N

N N N N N

N N N N N

N N N N N

B N N N N N

N N N N N

N N N N N

N N N N N





 





 
 
 
 
 

 
   
 

  
 


 
                                                                        

(12)

 
 

Once the matrix  B  is obtained, the element stiffness matrix   
eK  can be easily derived with the 

help of the above equations using the virtual work technique and it may be expressed as 

    

    

Te

A

T

A

K B D B dA

B D B dx dy

   






                                                                                                   

(13)

 
 

In a similar manner, the consistent mass matrix of an element can be derived and it may be written 

with the help of Eq. (4) as 

    

    

Te

A

T

A

M N N dA

N N dx dy





   






                                                                                               

(14)

 
where, 

  3

3

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0
12

0 0 0 0
12

h

h

h

h

h







 



 
 
 
 
 
 
 
 
 
    

and ρ is the overall density of the plate. 
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Stiffness and mass matrices obtained from 

Eqs. (13) and (14), respectively, using Gauss 

quadrature technique, are of the order of 

seventy-one by seventy-one. These matrices 

have been reduced to the required matrices

      
er erK and M  of the order of fifty-seven 

by fifty-seven by applying Guyan reduction 

scheme for global assembly [25]. The reduced 

element stiffness   
erK and element 

consistent mass matrices   
erM can be 

assembled into the following final form for 

free vibration equation of the plate: 

     2 0K M   
                    

(15)
 

 

The above equation has been solved by the 

simultaneous iterative technique of Corr and 

Jenning after substitution of boundary 

conditions to get first few frequencies for the 

lower modes of the plate [31].  
 

NUMERICAL EXAMPLES 
For all the examples, the warping factor (k) is 

assumed to be 
2 /12 . The geometry of the 

rectangular plate is shown in Figure 3. The 

boundary conditions of the plate with clamped 

edge (x=0), simply supported edge (x=a), 

clamped edge (y=0) and free edge (y=b) are 

symbolized as CSCF. The eigenvalues 

obtained in the present investigation have been 

expressed in the non-dimensional form which 

is defined by the parameter 

i=(ib
2
/2

)(t/D). Several case studies have 

been investigated for symmetric composite 

rectangular plates with different thickness 

ratios (t/b=0.001, 0.05, 0.1, 0.15 and 0.2), 

different aspect ratios (a/b=1.0 and 2.0) and 

different combinations of simply supported 

(S), clamped (C) and free (F) boundary 

conditions. The material properties for all the 

layers of the laminates are identical and are 

taken as =40;11 22E E 23 22G = 0.5E ;

12 31 220.6 ;G G E  12 0.25; 

21 0.00625 
. 

 

Convergence studies have been carried out for 

three-ply laminates with stacking sequence

 0°, 90°, 0° for two selected boundary 

conditions, namely SSSS and CFFF. The 

laminates are analysed with rotary inertia with 

thickness ratios (t/b=0.001 and 0.2) and 

different aspect ratios (a/b=1.0 and 2.0). The 

results obtained for different mesh divisions 

are shown in Table 1 along with Liew [32]. 

 

 
Fig. 3: Rectangular Plate (Mesh 32). 

 

Table 1 shows that the results obtained from 

the present analysis are very close to those by 

Liew [32]. To see the effect of thickness-to-

length ratio  t b  on the fundamental 

frequency parameters obtained by the present 

formulation, a simply supported four-ply 

symmetric laminates with stacking sequence

 0 ,90 ,90 ,0     are presented in Table 2 

with those by Ferreira and Fasshauer, Liew 

and Reddy and Phan [1, 32, 33]. From Table 2, 

it has been observed that the present results are 

in good agreement with the results obtained by 

Ferreira and Fasshauer, Liew and Reddy and 

Phan [1, 32, 33]. To study the efficiency of the 

present finite element formulation on the 

effect of other boundary conditions, thickness 

ratios, stacking sequences and the aspect 

ratios, the problem of free vibration analysis of 

composite rectangular plates having different 

lamina layers is considered as follows: The 

laminate consists of layers of equal thickness. 

The rectangular plate is analyzed numerically 

with different boundary conditions, namely 

CCCC, SSCC, SSFF and CCFF for three-ply 

laminates with stacking sequence  0 ,90 ,0  

with different thickness ratios 

 t b=0.001 and 0.2 and aspect ratios 

(a/b=1.0 and 2.0) . The results are presented in 

Tables 3 and 4 with those by Ferreira and 

Fasshauer and Liew [1, 32]. Another problem 

of five-ply laminate plates with stacking 

sequence (0°, 90°, 0°, 90°, 0°) for CCCC and 
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SSCC boundary conditions is considered. The 

results obtained are depicted in Table 5 along 

with the results obtained Ferreira and 

Fasshauer and Liew [1, 32]. Lastly the 

problem of eight-ply laminated plates with 

stacking sequence {(0°, 90°, 0°, 90°)2} for 

SFSF and CFCF boundary conditions has been 

considered. The results are tabulated in 

Table 6 along with Liew [32]. From Tables 2–

6, it has been seen that the present analysis 

give the non-dimensional frequency 

parameters very close to the results obtained 

by Ferreira and Fasshauer and Liew for very 

thin as well thick laminated plates for different 

stacking sequences, different aspect ratios and 

different boundary conditions. 

 

Table 1: Convergence Study of Frequency Parameters [=(b
2
/2

)(h/D0)] for Three-ply (0
o
, 90

o
, 

0
o
) Simply Supported and Clamped Rectangular Laminate Plates. 

Boundary Condition a/b t/b Source 
Mode sequences 

1 2 3 4 5 6 

SSSS 1 0.001 PS-2 6.6254 9.4711 16.4827 25.1359 26.8820 27.2144 

   PS-4 6.6252 9.4472 16.2064 25.1155 26.4997 26.6724 

   PS-6 6.6252 9.4471 16.2053 25.1150 26.4986 26.6580 

   PS-8 6.6252 9.4471 16.2052 25.1149 26.4984 26.6575 

   [32] 6.6252 9.4470 16.2051 25.1146 26.4982 26.6572 

  0.200 PS-4 3.6073 5.8231 7.5125 8.8690 9.3537 11.5927 

   PS-8 3.5972 5.7827 7.4263 8.7342 9.1990 11.3090 

   PS-12 3.5954 5.7752 7.4102 8.7085 9.1692 11.2539 

   PS-16 3.5947 5.7725 7.4045 8.6995 9.1587 11.2336 

   [32] 3.5939 5.7691 7.3972 8.6876 9.1451 11.2080 

 2 0.001 PS-2 2.3619 6.6329 6.6739 9.6370 14.3567 14.5166 

   PS-4 2.3618 6.6253 6.6646 9.4474 14.2877 14.3854 

   PS-6 2.3618 6.6252 6.6646 9.4471 14.2871 14.3847 

   PS-8 2.3618 6.6252 6.6645 9.4471 14.2871 14.3847 

   [32] 2.3618 6.6252 6.6845 9.4470 14.2869 14.3846 

  0.200 PS-4 1.9430 3.6172 4.9323 5.5666 5.8621 7.2851 

   PS-8 1.9402 3.5997 4.8899 5.5062 5.7929 7.1626 

   PS-12 1.9397 3.5965 4.8819 5.4948 5.7797 7.1380 

   PS-16 1.9396 3.5955 4.8791 5.4909 5.7753 7.1297 

   [32] 1.9393 3.5939 4.8755 5.4855 5.7691 7.1177 

CFFF 1 0.001 PS-2 2.2119 2.4860 4.7424 10.5340 13.8598 14.1730 

   PS-4 2.2119 2.4879 4.7497 10.5345 13.8599 14.1798 

   PS-6 2.2119 2.4884 4.7512 10.5356 13.8599 14.1807 

   PS-8 2.2119 2.4886 4.7518 10.5361 13.8599 14.1811 

   [32] 2.2119 2.4890 4.7530 10.5370 13.8598 14.1817 

  0.200 PS-4 1.4453 1.5458 3.4765 4.7160 4.8924 6.0430 

   PS-8 1.4446 1.5450 3.4684 4.6940 4.8685 6.0011 

   PS-12 1.4445 1.5448 3.4668 4.6898 4.8639 5.9930 

   PS-16 1.4445 1.5448 3.4662 4.6884 4.8623 5.9901 

   [32] 1.4444 1.5447 3.4655 4.6865 4.8603 5.9863 

 2 0.001 PS-2 0.5529 0.7863 3.4634 3.7437 3.7768 5.8191 

   PS-4 0.5529 0.7876 3.4635 3.7457 3.7800 5.8332 

   PS-6 0.5529 0.7879 3.4635 3.7460 3.7809 5.8364 

   PS-8 0.5529 0.7881 3.4635 3.7462 3.7812 5.8376 

   [32] 0.5529 0.7882 3.4635 3.7464 3.7819 5.8401 

  0.200 PS-4 0.4796 0.6215 1.9428 2.1307 3.1394 3.8997 

   PS-8 0.4795 0.6214 1.9400 2.1271 3.1296 3.8808 

   PS-12 0.4795 0.6214 1.9394 2.1264 3.1277 3.8770 

   PS-16 0.4795 0.6214 1.9393 2.1262 3.1270 3.8757 

   [32] 0.4795 0.6214 1.9390 2.1259 3.1260 3.8739 

PS-8 Present Study with rotary inertia with mesh division (88). 
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Table 2: Effect of Thickness-to-length Ratio on the Fundamental Frequency Parameters 

[=(b
2
/2

)(h/D0)] for a Simply Supported Square Four-ply (0°, 90°, 0°, 90°) Laminate Plates. 

t/b 0.01 0.02 0.04 0.05 0.08 0.10 0.20 0.25 0.50 

PS-2 6.6088 6.5547 6.3496 6.2091 5.7035 5.3435 3.8534 3.3425 1.9674 

PS-4 6.6063 6.5495 6.3375 6.1931 5.6762 5.3100 3.8075 3.2964 1.9309 

PS-6 6.6061 6.5488 6.3357 6.1905 5.6714 5.3039 3.7988 3.2877 1.9240 

PS-8 6.6060 6.5486 6.3351 6.1896 5.6697 5.3018 3.7958 3.2847 1.9215 

PS-10 6.6060 6.5486 6.3348 6.1892 5.6689 5.3008 3.7944 3.2833 1.9203 

PS-12 6.6060 6.5485 6.3347 6.1891 5.6685 5.3003 3.7936 3.2825 1.9197 

PS-14 6.6060 6.5485 6.3347 6.1890 5.6683 5.3000 3.7931 3.2820 1.9193 

PS-16 6.6060 6.5485 6.3347 6.1889 5.6683 5.3000 3.7928 3.2817 1.9191 

PS-18 6.6060 6.5485 6.3347 6.1889 5.6683 5.3000 3.7926 3.2815 1.9189 

PS-20 6.6060 6.5485 6.3347 6.1889 5.6683 5.3000 3.7925 3.2814 1.9188 

[1] 6.6012 6.5438 6.3300 6.1844 5.6641 5.2960 3.7903 3.2796 1.9180 

[32] 6.606 6.549 6.338 6.193 5.677 5.311 3.807 3.295 1.929 

[33] 6.578 6.475 6.330 6.196 5.708 5.355 3.854 3.331 1.956 

 

Table 3: Frequency Parameters [=(b
2
/2

)(h/D0)] for Three-ply Laminated Plates (0°, 90°, 0°) 

for CCCC and SSCC Boundary Conditions. 

Boundary Condition a/b t/b Source 
Mode sequences 

1 2 3 4 5 6 

CCCC 1 0.001 PS-8 14.6656 17.6139 24.5118 35.5326 39.1586 40.7695 

   [1] 14.6918 18.4741 26.9611 37.6121 39.3560 40.9241 

   [32] 14.666 17.614 24.511 35.532 39.157 40.768 

  0.200 PS-16 4.4482 6.6473 7.7079 9.1991 9.7546 11.4277 

   [1] 4.4465 6.6420 7.6995 9.1848 9.7377 11.3990 

   [32] 4.447 6.642 7.700 9.185 9.738 11.399 

 2 0.001 PS-8 5.1051 10.5266 10.5829 14.3244 19.5679 19.7013 

   [1] 5.0970 10.4052 10.6097 14.3575 18.9482 19.7608 

   [32] 5.105 10.527 10.583 14.324 19.567 19.701 

  0.200 PS-16 3.0463 4.2509 5.7978 5.9112 6.5441 7.7029 

   [1] 3.0452 4.2481 5.7916 5.9042 6.5347 7.6885 

   [32] 3.045 4.248 5.792 5.905 6.535 7.688 

SSCC 1 0.001 PS-8 7.3961 12.1439 20.8411 25.3652 27.6717 33.0324 

   [32] 7.396 12.144 20.841 25.365 27.671 33.032 

  0.200 PS-16 4.1382 6.4792 7.6728 9.1732 9.6597 11.4048 

   [32] 4.137 6.474 7.664 9.159 9.642 11.377 

 2 0.001 PS-8 3.9840 7.3961 10.0616 12.1446 14.6894 17.9147 

   [32] 3.984 7.396 10.061 12.144 14.688 17.912 

  0.200 PS-16 2.8407 4.1392 5.7131 5.8551 6.4838 7.6790 

   [32] 2.840 4.137 5.707 5.848 6.474 7.664 
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Table 4: Frequency Parameters [=(b
2
/2

)(h/D0)] for Three-ply Laminated Plates (0°, 90°, 0°) 

for SSFF and CCFF Boundary Conditions. 

Boundary 

Condition 
a/b t/b Source 

Mode sequences 

1 2 3 4 5 6 

SSFF 1 0.001 PS-8 6.2079 6.4356 7.9749 12.7521 21.3460 24.8317 

   [32] 6.208 6.436 7.975 12.752 21.346 24.831 

  0.200 PS-16 3.2134 3.3116 4.6208 7.2022 7.2793 7.6063 

   [32] 3.213 3.311 4.619 7.195 7.272 7.599 

 2 0.001 PS-8 1.5545 1.7723 4.2594 6.2101 6.4357 7.9777 

   [32] 1.552 1.770 4.257 6.208 6.436 7.975 

  0.200 PS-16 1.1952 1.3307 3.2138 3.3121 3.4057 4.6222 

   [32] 1.195 1.331 3.213 3.311 3.405 4.619 

CCFF 1 0.001 PS-8 14.0725 14.1989 15.0363 18.1352 25.0385 36.0012 

   [32] 14.072 14.199 15.037 18.136 25.039 36.000 

  0.200 PS-16 3.6370 3.6724 4.8094 7.2419 7.3160 7.6887 

   [32] 3.636 3.672 4.807 7.235 7.309 7.681 

 2 0.001 PS-8 3.5189 3.6456 5.3700 9.6990 9.8699 10.8000 

   [32] 3.518 3.644 5.369 9.698 9.869 10.799 

  0.200 PS-16 1.6619 1.7047 3.3673 3.4444 3.5155 4.6931 

   [32] 1.662 1.704 3.366 3.443 3.514 4.690 

 

Table 5: Frequency Parameters [=(b
2
/2

)(h/D0)] for Five-ply Laminated Plates (0°, 90°, 0°, 

90°, 0°) for CCCC and SSCC Boundary Conditions. 

Boundary Condition a/b t/b Source 
Mode sequences 

1 2 3 4 5 6 

CCCC 1 0.001 PS-8 14.6671 23.1591 36.1648 39.5823 40.7785 52.4086 

   [1] 14.4337 18.7244 35.8179 40.9718 40.9718 52.5993 

   [32] 14.667 23.159 36.164 39.582 40.777 52.404 

  0.200 PS-16 4.8432 7.4820 7.8679 9.7445 10.9468 11.4868 

   [1] 4.8279 7.5339 7.7699 9.7082 11.0603 11.2888 

   [32] 4.841 7.474 7.859 9.728 10.923 11.457 

 2 0.001 PS-8 7.6278 11.3501 18.8367 19.2392 21.1953 26.2397 

   [1] 7.5611 11.1165 17.4333 19.2374 21.3109 24.2316 

   [32] 7.628 11.350 18.836 19.239 21.195 26.239 

  0.200 PS-16 3.6270 4.6392 6.1545 6.7584 7.3700 7.8590 

   [1] 3.6566 4.6327 6.1015 6.8399 7.4233 7.7551 

   [32] 3.625 4.636 6.147 6.748 7.357 7.843 

SSCC 1 0.001 PS-8 9.0725 20.0280 23.9009 30.3271 37.7886 44.6450 

   [32] 9.072 20.028 23.901 30.327 37.787 44.643 

  0.200 PS-16 4.5115 7.2917 7.8206 9.7086 10.8256 11.4571 

   [32] 4.510 7.285 7.812 9.691 10.801 11.429 

 2 0.001 PS-8 7.0510 9.0725 14.7085 19.0029 20.0285 23.3996 

   [32] 7.051 9.072 14.708 19.003 20.028 23.398 

  0.200 PS-16 3.4438 4.5128 6.0857 6.6726 7.2975 7.8277 

   [32] 3.442 4.510 6.078 6.663 7.285 7.812 
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Table 6: Frequency Parameters [=(b
2
/2

)(h/D0)] for Eight-ply Laminated Plates {(0°, 90°, 0°, 

90°)2} for SFSF and CFCF Boundary Conditions.  

Boundary Condition a/b t/b Source 
Mode sequences 

1 2 3 4 5 6 

SFSF 1 0.001 PS-8 0.4657 5.8411 8.3537 10.8837 18.5189 21.3252 

   [32] 0.466 5.841 8.354 10.886 18.519 21.328 

  0.200 PS-16 0.4300 3.9257 4.4945 6.0396 8.0847 8.5712 

   [32] 0.430 3.925 4.493 6.035 8.075 8.560 

 2 0.001 PS-8 0.2410 2.1759 5.7142 6.4020 6.7706 9.4371 

   [32] 0.232 2.175 5.714 6.402 6.771 9.438 

  0.200 PS-16 0.2192 1.6994 3.7658 3.8588 4.2862 5.4760 

   [32] 0.219 1.699 3.764 3.857 4.284 5.471 

CFCF 1 0.001 PS-8 2.3901 8.5219 11.9813 15.1706 22.9460 26.7701 

   [32] 2.390 8.522 11.982 15.174 22.946 26.774 

  0.200 PS-16 1.7297 4.2590 4.6278 6.1538 8.2950 8.7338 

   [32] 1.730 4.258 4.626 6.150 8.284 8.722 

 2 0.001 PS-8 1.4214 3.3478 8.1671 8.4574 8.9929 12.2275 

   [32] 1.421 3.347 8.167 8.458 8.994 12.229 

  0.200 PS-16 1.1649 2.1397 3.9957 4.0498 4.4936 5.6447 

   [32] 1.165 2.139 3.994 4.048 4.491 5.639 

 

CONCLUSIONS 
A twenty-five node triangular shear flexible 

plate bending element with seventy-one 

degrees of freedom has been utilized to 

investigate the free vibration of laminated 

composite rectangular plates with different 

thickness ratios, aspect ratios, stacking 

sequences and boundary conditions. The 

degrees of freedom associated with the seven 

internal nodes are condensed by Guyan 

reduction scheme to get the reduced element 

stiffness and mass matrices of the order of 

fifty-seven by fifty-seven. A comparative 

study of present results with those of earlier 

investigators shows the rapid convergence 

characteristics and accuracy of the present 

element for very thin to thick plates. It can 

also be concluded that due to increase of node 

numbers on the edges of the proposed element 

the mass and rotary inertia distribution at 

different nodes are such that the mass as well 

as rotary inertia associated with the internal 

nodes are negligible compared to those with 

the nodes on the edges. This helps the 

application of Guyan reduction scheme to this 

element efficiently and accurately. 
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