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Abstract 
For the first time, the solution of third order perturbed classical Heisenberg Hamiltonian 

equation with all the seven magnetic parameters including stress induced anisotropy and 

demagnetization factor is presented in this manuscript. Variation of third order perturbed 

total energy with applied in plane magnetic field, applied out of plane magnetic field, 

demagnetization factor and spin exchange interaction is described in this manuscript. Several 

peaks can be observed in each 3-D plot implying that there are many easy and hard directions 

for magnetization. All the simulations reported in this manuscript are given for a 

ferromagnetic film with three spin layers (N=3). Although this simulation was performed for 

some selected values of seven magnetic energy parameters, the simulation can be carried out 

for any values of magnetic energy parameters. 
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INTRODUCTION 
Ferromagnetic thin films find potential 

applications in magnetic memory devices and 

microwave devices. EuTe films with surface 

elastic stresses have been theoretically studied 

using Heisenberg Hamiltonian [1]. 

Magnetostriction of dc magnetron sputtered 

FeTaN thin films has been theoretically 

studied using the theory of De Vries [2]. 

Magnetic layers of Ni on Cu have been 

theoretically investigated using the Korringa-

Kohn-Rostoker Green’s function method [3]. 

Electric and magnetic properties of 

multiferroic thin films have been theoretically 

explained by modified Heisenberg and 

transverse Ising model using Green’s function 

technique [4].  

 

The quasistatic magnetic hysteresis of 

ferromagnetic thin films grown on a vicinal 

substrate has been theoretically investigated by 

Monte Carlo simulations within a 2D model 

[5]. Structural and magnetic properties of two 

dimensional FeCo orders alloys deposited on 

W(110) substrates have been studied using 

first principles band structure theory [6]. 

Previously strontium ferrite and nickel ferrite 

films were synthesized using sputtering by us 

[7,8]. In addition, lithium mixed ferrite films 

were fabricated using pulsed laser deposition 

[9]. For all these films, the coercivity of film 

increased due to the stress induced anisotropy. 

The change of coercivity due to the stress 

induced anisotropy was qualitatively 

calculated for all these films. The calculated 

values of the change of coercivity agreed with 

the experimentally found values. So the stress 

induced anisotropy plays a major role in 

magnetic thin fabrications. Previously the 

Heisenberg Hamiltonian was employed to 

investigate the second order perturbed energy 

of ultrathin ferromagnetic films, thick 

ferromagnetic films, unperturbed energy of 

spinel ferrite films, second order perturbed 

energy of thick ferromagnetic films, third 

order perturbed energy of thick spinel ferrite, 

third order perturbed energy of thin spinel 

ferrite, second order perturbed energy of thick 

ferrite and the spin reorientation of barium 

hexa-ferrite [10–17].  

 

Many other researchers have used Heisenberg 

Hamiltonian to solve the problems of magnetic 

thin films. Ferromagnetic thin films have been 

previously studied using the Heisenberg 

Hamiltonian with spin exchange interaction, 

magnetic dipole interaction, applied magnetic 

field, second and fourth order magnetic 
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anisotropy [18–20]. Magnetization reversal 

and domain structure in thin magnetic films 

have been theoretically investigated [21]. In-

plane dipole coupling anisotropy of a square 

ferromagnetic Heisenberg monolayer has been 

described using Heisenberg Hamiltonian [22]. 

Effect of the interracial coupling on the 

magnetic ordering in ferro-antiferromagntic 

bilayers has been studied using Heisenberg 

Hamiltonian [23]. 

 

MODEL 
Following modified Hamiltonian was used as the model. 
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Here J is spin exchange interaction,is the 

strength of long range dipole interactionis 

azimuthal angle of spin 
)2(

mD
 and 

)4(

mD
 are 

second and fourth order anisotropy constants, 

inH
 and outH

 are in plane and out of plane 

applied magnetic fields, sK
 is stress induced 

anisotropy constant, n and m are spin plane 

indices, and N is total number of layers in 

film. When the stress applies normal to the 

film plane, the angle between m
th
 spin and the 

stress is m. In this 2-D model, only the x any 

components of the spin are considered.  After 

considering only the x and y components of 

the spin, the total energy per unit spin can be 

deduced to the following equation; 
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with m (or n) 
) (,,Z

n-m nmnm
or

 , N, Hin 

and Hout being indices of layers, number of 

nearest spin neighbors, constant arising from 

summation of dipole interactions, azimuthal 

angles of spins, total number of layers, in 

plane applied field and out of plane applied 

field, respectively. For nonoriented films 

above angles θm and θn measured with film 

normal can be expressed in forms of 

mm  
 and nn  

, and above 

energy can be expanded up to the third order 

of  as following. Here m (or n) is a small 

perturbation of the angle.    

 

E()=E0+E()+E(

)+E(


)                                                                                                            (3) 

Here E0= -
 








N

nm
nm

N

nm
nmnm

JZ
1, 1,

2cos
8

3
)

4
(

2

1




 

)2sincossin(coscos
0

)4(

1 1

4)2(2 


 s
d

outinm

N

m

N

m

m K
N

HHNDD   
   

E ()=
  

  



N

nm

N

m

N

m

mmmmnmnm
DD

1, 1 1

)4(2)2(
2sincos22sin)(2sin

8

3




 



Research and Reviews: Journal of Physics 

Volume 5, Issue 2 

ISSN: 2278–2265(online), ISSN: 2347-9973(print) 

 

RRJoPHY (2016) 23-30 © STM Journals 2016. All Rights Reserved                                                           Page 25 

  
  


N

m

N

m

N

m

msmoutmin KHH
1 1 1

2cos2sincos 
 

E (

) =

 
 




N

nm

N

nm

nmnmnmnmnm
JZ

1, 1,

22 )(2cos
16

3
))(

4
(

4

1







 

 
 


N

m

N

m

mmmm DD
1 1

2)4(2222)2(22 )sin3(coscos2)cos(sin 
 

  
  


N

m

N

m

N

nm

nm
d

m
out

m
in NHH

1 1 1,

2

0

22
)(

2
cos

2
sin

2





 





N

m

msK
1

2
2sin2 

 

 
 

 



N

nm

N

m

mmnmnm DE
1, 1

3)2(33 sincos
3

4
)(2sin

16
)( 




 

                
 
 


N

m

N

m

m
in

mm

H
D

1 1

33)4(22 cos
6

)sincos
3

5
(sincos4 

 

                 
 
 


N

m

N

m

m
s

m
out KH

1 1

33
2cos

3

4
sin

6


                                                                     (4) 

After using the constraint




N

m

m

1

0
, E()= 


.  

Here 
 2sin)()( B




 are the terms of matrices with 




 
2)4(

)2(

1

cos2
4

3
)( DDB

N

m
m

 




                                                                            (5) 

Also 



..
2

1
)( 2 CE 

 

Here the elements of matrix C can be given as following; 

0

2
2cos

4

3
)

4
(




 d

nmnmnmmn

N
JZC 



 

          






N

mmmmn DJZ
1

)2(22 )cos(sin2)]2cos
4

3

4
([{








 

         

}2sin4
4

cossin)sin3(coscos4
0

)4(222 


 s
d

outinm K
N

HHD 

             (6) 

And also third order can be expressed as the 




.)( 23 E
 

Here matrix elements of matrix β can be given as following; 

)2(

0 sincos
3

4
][2sin

8
{2sin

8

3
mmmnnmmn DA 





 



 

            
 sin

6
cos

6
)sincos

3

5
(sincos4

)4(22 outin
m

HH
D 

 

             
}2cos

3

4
sK


                                                                                                                 (7)  



Third Order Perturbed Heisenberg Hamiltonian of BCC                                                  Samarasekara and Yapa 

 

 

RRJoPHY (2016) 23-30 © STM Journals 2016. All Rights Reserved                                                           Page 26 

Also nm=mn, and matrix is symmetric. 

By substituting all the terms, total energy can 

be expressed as  

E()=E0+ 


. +



...
2

1 2C
   

 

At the minimum energy (the stable state or the 

energetically favorable state), the derivative of 

above E() with respect to  will be zero. 

Using that condition,  can be found. After 

substituting that  in above equation of E(), 

following equation can be derived. 
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The total magnetic energy have been 

calculated only for three layers (N=3), and the 

equation have been proved under the 

assumption of D1
(2)

=D2
(2)

 =D3
(2)

and 
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(4)
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(4)
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(4)

. 

 

Following equation has been used to calculate 

the elements of matrix C
+
.  

N

E
CC  1.

                                             (9) 

Here E is the matrix with all elements given by 

Emn=1. 

 

RESULTS AND DISCUSSION 
Previously, the magnetic energy of 

ferromagnetic films with two and three layers 

has been found using the third order perturbed 

Heisenberg Hamiltonian with spin exchange 

interaction, second order magnetic anisotropy 

and stress induced anisotropy terms only to 

avoid tedious calculations [17]. Using a 

MATLAB computer program, the third order 

perturbed magnetic energy equation with all 

the seven magnetic parameters could be 

solved. The data of third order perturbed 

magnetic energy equation with all seven terms 

for bcc (001) structured ferromagnetic film 

with three layers (N=3) is presented in this 

manuscript.   

 

For bcc (001) lattice Z0=0, Z1=4, Z2=0, 

8675.50 
 and 

7126.21 
 [18]. 

 

The 3-D plots of   versus θ and   is given 

in Figure 1. Other parameters were kept at 

10,20,30

)4()2(




doutinmm NHHJDD

 

According to this figure, several easy and hard 

directions can be observed for each value of 

stress induced anisotropy. Hard directions with 

two different energies could be observed.  

 

When = 3.5, 8, 13.5, 18, ---- etc. hard 

directions of magnetizations with higher 

energy can be seen. At each case, hard 

direction of magnetization appears at =7 

radians. When = 11, 21, ---- etc. hard 

directions of magnetizations with lower energy 

can be seen. Similarly easy directions with two 

different energies could be observed. When 

=10, 20, 30, ---- etc. easy directions of 

magnetizations with lower energy can be seen.  

 

When =7, 17, 27, ---- etc. easy directions of 

magnetizations with higher energy can be 

seen. For each case, easy direction can be 

observed at = 4 radians. According to our 

previous experimental data, stress induced 

anisotropy is crucial in the deposition of 

magnetic thin films [7–10].  

 

3-D plot of  versus θ and   is shown in 

Figure 2. Other parameters were kept at 

10,20,30

)4()2(
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Several peaks corresponding to easy and hard 

directions can be observed. Again hard 

directions with two different energies could be 

observed. When  =6, 11, 16, ------etc. hard 

directions of magnetizations with higher 

energy can be seen. When  =3, 8, 13, ------

etc. hard directions of magnetizations with 

lower energy can be seen. Hard direction could 

be observed at =3 radians. Similarly easy 

directions with two different energies could be 

observed. When  =2, 7, 12, ------etc. easy 

directions of magnetizations with lower energy 
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can be seen. When  =5, 15, 25, ------etc. 

easy directions of magnetizations with higher 

energy can be seen. Easy direction appears at 

=7 radians. 
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Fig. 1: 3-D plot of  versus θ and  for N=3. 
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Fig. 2: 3-D plot of  versus θ and   for N=3. 
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Figure 3 shows the 3-D plot of  versus θ 

and . Other parameters were kept at 

10,20,30
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Hard directions of magnetizations can be 

observed at  =10, 20, 30, ------- etc.  

 

Easy directions of magnetizations can be 

observed at  =11,  

21, ------- etc.       

Figure 4 shows the 3-D plot of  versus θ 

and 

J

.  

Other parameters were kept at 

10,20,30
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Several peaks can be observed corresponding 

to easy and hard directions of magnetization. 

Hard directions of magnetization can be 

observed at 

J

=1, 11, 21, ----etc.  

 

Easy directions of magnetization appear at 



J

=10, 20, 30, -------etc. One hard direction 

of magnetization can be observed at =3 

radians. Easy direction can be observed at =2 

radians approximately. 
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Fig. 3: 3-D plot of  versus θ and  for N=3. 
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Fig. 4: 3-D plot of  versus θ and 

J

for N=3. 

 

CONCLUSION 

According to 3-D plots of   versus θ and 

,  hard directions of magnetizations with 

higher energy can be seen at = 3.5, 8, 13.5, 

18, ----etc. and hard directions of 

magnetizations with lower energy can be seen 

at = 11, 21, ----etc. At each case, hard 

direction of magnetization appears at =7 

radians. Easy directions of magnetizations 

with lower energy can be seen at =10, 20, 

30, ----etc. Easy directions of magnetizations 

with higher energy can be seen at =7, 17, 27, 

----etc. For each case, easy direction can be 

observed at = 4 radians. Similarly several 

easy and hard directions were observed for 

,   and 

J

. Previously the third order 

perturbed Heisenberg Hamiltonian with only 

three magnetic energy parameters was solved 

for simple cubic ultra thin ferromagnetic films 

with two and three layers by us [17]. However, 

only few peaks could be observed for the 

graph of J

K s

 in that case. 
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