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Abstract 
The present study reports stress and deformation analysis of rotating thick truncated conical 

shells made of exponentially varying functionally graded material, subjected to linearly 

varying internal pressure. Material properties of the shells are graded exponentially along the 

axial direction. Metal-ceramic as well as ceramic-metal (FGM) of aluminum metal and 

zirconia ceramic is considered. The stresses and deformation behavior are evaluated at 

different surfaces along the radius and at different angular velocities. A comparison of 

behavior of FGM shells and homogeneous shell is also made. Numerical results obtained 

shows that the stresses and deformation are maximum at inner surface, near the bottom zone 

and it is observed that the effect of angular velocity is more dominant over internal pressure, 

at high speeds.  
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INTRODUCTION 
Functionally graded materials (FGMs) are 

multiphase composite materials that have 

continuous and smooth spatial variations of 

physical and mechanical properties. The 

gradation of material properties in FGMs is 

achieved by continuously varying the volume 

fractions of the constituents.  

 

Functionally graded conical shells are widely 

used in space vehicles, aircrafts, nuclear power 

plants and many other engineering 

applications [1]. A semi analytical approach 

using first-order shear deformation theory 

(FSDT), Matched asymptotic method (MAM) 

and multilayer method (MLM), can be adopted 

for the purpose of elastic analysis of rotating 

thick truncated conical shells made of 

functionally graded materials (FGMs) [1–3]. 

To obtain the elastic behavior of functionally 

graded thick truncated cone by finite element 

method, Rayleigh–Ritz energy formulation is 

applied in [4].  

 

To analyze conical shell problem, a thin shell 

model was developed by using the modified 

couple stress theory and the equations of 

motion are derived with partial differentials 

and classical and nonclassical boundary 

conditions by using Hamilton’s principle [5]. 

The generalized coupled thermoelasticity, 

based on the Lord–Shulman (L-S) theory was 

employed to study the transient thermoelastic 

behavior of rotating functionally graded (FG) 

truncated conical shells subjected to thermal 

shock with different boundary conditions in 

[6]. The stability behavior of functionally 

graded (FG) truncated conical shell, 

interacting with two-parameter elastic 

foundation is investigated within the shear 

deformation theory (SDT) according to the 

framework of the Donnell's shell theory [7].  

 

The buckling of freely-supported functionally 

graded (FG) truncated and complete conical 

shells under external pressures can be studied 

in the framework of the shear deformation 

theory (SDT) [8].  An improved high-order 

theory can be adopted for temperature-

dependent buckling analysis of sandwich 

conical shell with thin functionally graded 

(FG) facesheets and homogenous soft core [9]. 

A free and forced vibration analysis of coupled 

conical–cylindrical shells with arbitrary 

boundary conditions is analyzed using a 

modified Fourier–Ritz method [10]. The 
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dynamic behavior of functionally graded (FG) 

truncated conical shells subjected to 

asymmetric internal ring-shaped moving loads 

can be obtained by the first-order shear 

deformation theory (FSDT) using Hamilton׳s 

principle, assuming that the material properties 

have continuous variations in the shell 

thickness direction [11]. 

Literature review, although points towards the 

popularity of the area of investigation of 

truncated conical shells stress and deformation 

behavior, however, to the best of the 

researcher’s knowledge, no study has been 

carried out to date on exponential FGM 

rotating conical shell.  

 

In the present study, rotating truncated conical 

shells, made of axially varying FGM whose 

properties vary exponentially in axial direction 

are analyzed. Aluminum as a metal and 

zirconia as ceramic is used and metal-ceramic 

as well as ceramic-metal FGM shells are 

considered. The shells are subjected to linearly 

varying pressure fields at its inner surface 

having clamped-clamped boundary condition. 

The work aims at investigating stress and 

deformation behavior of the shells at different 

angular velocities and for different 

homogeneous and FGM material. 

 

MATHEMATICAL FORMULATION 
Figure 1 shows the geometric parameters for 

the modeling of axisymmetric cross section of 

the truncated conical shell. L and h are length 

and thickness; and a and b are the inner radius 

at bottom and top surfaces of the shell. z is the 

distance of any point within the cross section 

from central plane, along the radial direction 

and x is height from the bottom edge, along 

axial direction. R is the distance of the central 

plane of the cross section, along the radial 

direction from the central axis of the shell, 

which is given by [1]: 

 tan
2

h
R a x  

                                 (1) 

where,  is half of the tapering angle, given as: 

1 tan
a b

L
   
  

                                   (2) 

 

Young’s modulus and density of the shell are 

assumed to vary according to the exponential 

law (Eqs. 3–6) [12]. 
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                                              (3) 

  x
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                                  (4) 
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ln
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




 
  

                                              (6) 

E(x) and ρ(x) are modulus of elasticity and 

density at height x; EA, EB and ρA, ρB are 

modulus of elasticity and density at the bottom 

and top surfaces, respectively.  Figure 2 shows 

the boundary conditions applied on the shells. 

Linearly varying pressure field at the inner 

surface is given by [1]: 

 

 
Fig. 1: Geometric Parameters of the Shell. 

 

 
Fig. 2: Boundary Conditions Applied. 
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   1 2 1

x
P x P P P

L

 
    

                                                                                                                    (7) 

where, P1 and P2 are pressure at x = 0 and x = L. Axial component Px and radial component Pz of P(x) 

is given by  

sinxP P 
, 

coszP P 
                                                                                                           (8) 

 

The rotating shell is modeled as an axisymmetric problem. Using quadratic quadrilateral element, the 

displacement vector {φ} can be obtained as [13]: 

      
T e

u v N  
                                                                                                            (9) 

 

where, u and v are the components of displacement in radial and axial direction, respectively. [N] is 

the matrix of quadratic shape functions and {δ}
e
 is the nodal displacement vector, given as:  

  1 2 8

1 2 8

0 0 . 0

0 0 . 0

N N N
N

N N N

 
  

    

   1 1 2 2 8 8

e T
u v u v u v   

  
 

by transforming the global co-ordinates into natural co-ordinates (ξ-η), the shape functions are 

obtained as: 
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The strain components are related to elemental displacement components by Eqs. (10) to (14), where 

εr, εθ, εz and γrz are radial, tangential, axial and shear strain, respectively.  

                                                     (10) 
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By transforming the global co-ordinates into natural co-ordinates (ξ-η), 

 2

TT
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         
    

                                                          (12) 

   3

T

eu u v v u
B

r


   

    
  

                                                             (13) 

The above elemental strain-displacement relationships can be written as: 

    
e

B 
                                                                                                                                    (14) 

where, [B] is strain-displacement relationship matrix, which contains derivatives of shape functions.  

For a quadratic quadrilateral element it is calculated as: 

       1 2 3B B B B  
                                                                                                          (15) 
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where, J is the Jacobian matrix, used to transform the global co-ordinates into natural co-ordinates. It 

is given as: 
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From generalized hooks law, components of stresses in radial, circumferential and axial direction (σr, 

σθ, σz and τrz ) are related to components of total strain as: 

 
1

r r z
E

     
                                                                                                           (20) 

 
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r z
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 
1

z z r
E

     
                                                                                                                  (22) 

 

In generalized matrix notation, stress-strain relation can be written as: 
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When the shell rotates and is subjected to internal pressure, it experiences a distributed force over its 

volume and surface. Under these forces when shell is properly supported (so as to prevent rigid body 

motion), it undergoes deformation and stores internal strain energy U, which is given by Eq. (27). 

   
1

    
2

T

V

U dv  
                                                                                                                         (27) 

Also the potential of external body and surface force is given by 
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The element level equation can be written as 
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The total potential of the element can be written as 
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Defining element stiffness matrix [K]
e 
and element load vector {f}

e
 as: 

         
e T

V

K B D r B dv   
                                                                                              (32) 
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e T T
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                                                                                            (33) 

Taking axisymmetric element, thickness of the element will be 2πr, therefore: 
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Transforming global co-ordinates into natural co-ordinates 
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where J is the Jacobian matrix, which is given by Eq. (18). 

Total potential energy of the shell is given by 
e

p p 
                                                                                                                                     (38) 

Using the Principle of stationary total potential (PSTP) the total potential is set to be stationary with 

respect to small variation in the nodal degree of freedom that is: 

 
0

p

T









                                                                                                                                     (39) 

which gives system level equation for shell as:  

    K F 
                                                                                                                        (40) 

 

Where 

 

   
1

   
N

e

n

K K Globel Stiffness matrix


 
 

   
1

   
N

e

n

F f Globel load vector


 
  

 

RESULTS AND DISCUSSION 
Validation of the Work 

To validate the current research work, a 

similar system of conical shell which is 

previously analyzed is reconsidered. The shell 

has geometric parameters [1] as: L = 400 mm, 

h = 20 mm, a = 40 mm and b = 30 mm. 

Material gradation is done by power law, and 

shell has clamped-clamped boundary 

condition. Circumferential stresses for ω = 0, 

1000 and 2000 rad/s are evaluated taking m = 

n = 1 and a comparison with reference is 

presented in Figure 3. Both the results are in 

good agreement.    
Fig. 3: Validation of the Work. 
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Numerical Results 

In this section a conical shell made up of 

exponentially varying FGM is analyzed. 

Aluminum as metal and zirconia as ceramic is 

taken and Ceramic-metal and Metal-ceramic 

both the FGM shell is analyzed. The material 

properties of aluminum and zirconia are given 

as [14]: 

EAl = 70 GPa, Ecer = 151 GPa, ρAl = 2700 

kg/m
3
, ρcer = 5700 kg/m

3
, 

The shell has same geometric parameters as 

discussed above [1], that is L = 400 mm, h = 

20 mm, a = 40 mm and b = 30 mm. Shell has 

clamped-clamped boundary condition. P1 and 

P2 are taken as 120 MPa and 40 MPa.  

Figures 4 to 7 show the distributions of 

normalized radial displacement, radial stress, 

circumferential stress and shear stress, 

respectively. All the distributions are along the 

axial direction and evaluated at 1000 rad/s, for 

metal-ceramic FGM shells. It is observed that 

deformation in radial direction is minimum 

that is zero at bottom and top surface, which 

confirms the clamped-clamped boundary 

condition applied to the shell. Deformations 

are maximum at the inner layer, i.e., at z = -h/2 

and decreases gradually till the outer layer (z = 

h/2). It is maximum near the bottom surface 

and gradually decreases till the top surface. 

Radial stresses are tensile and compressive 

both in nature while circumferential stresses 

are only tensile. Compressive radial stress is 

more as compared to tensile radial stress. 

Tensile radial stress occurs only in a small 

zone near top and bottom surface and rest of 

the intermediate height zone has compressive 

radial stress. Circumferential stress has same 

distribution pattern as radial displacement. It is 

maximum at the inner layer, near the bottom 

surface, and decreases gradually up to the top 

surface and outer layer. Shear stress varies 

only in a small zone near the top and bottom 

surface and remains same in all the layers at 

intermediate heights. It is maximum at the 

bottom surface, i.e., at x = 0. 

It can be seen from Figures 8 and 9. that 

deformation and stresses both increase with 

increasing angular velocity but at lower speeds 

(less than 500 rad/s), the effect of angular 

velocity is very less, since below this speed, 

stresses due to internal pressure is more 

dominant and above this speed, centrifugal 

force and stress has a significant value as 

compared to internal pressure. 

 

  
Fig. 4: Normalized Radial Displacement (ω = 

1000). 

Fig. 5: Normalized Radial Stress (ω = 1000). 

  
Fig. 6: Normalized Circumferential Stress (ω = 

1000). 

Fig. 7: Normalized Shear Stress (ω = 1000). 
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Fig. 8: Normalized Radial Displacement (z = -  

h/2). 

Fig. 9: Normalized Circumferential Stress (z = -

h/2). 
 

  
Fig. 10: Normalized Radial Displacement (z = -

h/2, ω = 1000). 

Fig. 11: Normalized Circumferential Stress (z = -

h/2, ω = 1000). 

 

Figures 10 and 11; show the distribution of 

radial displacement and circumferential stress 

for different types of materials. It can be seen 

that material has a significant role in 

deformation but has very low effect on 

stresses. Homogeneous ceramic material shell 

has minimum radial deformation and 

homogeneous metallic shell has maximum 

deformation but at the same time ceramic has 

highest density and metal has lowest density. 

Therefore, to optimize deformation to weight 

ratio, ceramic-metal FGM is best suitable for 

conical shell structure.   

 

CONCLUSION 
In the present study stress and deformation 

analysis of rotating thick truncated conical 

shells made up of functionally graded material 

is done. Material properties are modeled by 

exponential law which is achieved by element 

based material grading. The shells are 

subjected to clamped-clamped boundary 

condition and linearly varying pressure field at 

its inner surface. The governing equations are 

modeled using principle of stationary total 

potential. Numerical results are obtained for 

metal-ceramic and ceramic-metal FGM of 

aluminum and zirconia. The results obtained 

are found to be in good agreement with 

established reports. On the basis of results 

obtained it can be concluded that deformation 

and stresses are more in the inner layer, near 

the bottom surface and increases with 

increasing angular velocity. The effect of 

rotation is considerable above 500 rad/s 

angular velocity. To optimize deformation to 

weight ratio, ceramic-metal FGM is best 

suitable for truncated conical shell structure.  
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