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Abstract 
“Solitons”, are comprised of a loosely coupled coherent system of subquantum entities. This 

coherent solitonic system of loosely coupled entities can be viewed as a partial description of 

consciousness. BIS stands for breakdown of integrated system. It is of three kinds: resistive, 

capacitative and inductive. In our present paper we will study the behavior of unperturbed 

mind due to strong inductive BIS processes.  
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INTRODUCTION 
Emergence of Consciousness 

Different works on the brain and mind 

problems have used quantum theory to explain 

the emergence of consciousness. There are, in 

quantum theory as well as in statistical 

physics, collective phenomena irreducible to 

individual components of the system. The 

conjecture is that collective quantum 

phenomena produce coherent states in the 

brain. As we shall see in this paper, 

decoherence was not taken into account 

generally in current quantum models of  mind 

until very recent polemical works. 

 

Physiology of Microtubules 

The walls of microtubules in the cytoskeleton 

of neurons can work as cellular automata, able 

to store information [1], and to make 

computation by using combinations of the two 

possible states (as dimmers) of the tubulins 

that constitute these walls [2–6]. The interior 

of the microtubule works as an 

electromagnetic wave guide, full of water in an 

organized collective state, able to transmit 

information through the brain.  

 

MATERIALS AND METHODS 

Interaction between System (brain) and 

Environment 

The number of tubulins was calculated by 

Hameroff and Penrose [7]. The coherence time 

t is based on typical response time of the brain 

to external stimulus (Figure 1). 

 

 
Fig. 1: Alpha and Beta Microtubules. 

 

Using Heisenberg’s uncertainty principle, the 

critical energy for OOR can be written as: 

/E t          (1) 

 

The numerator is the Planck constant 

(6.626075510
3

4 Js) over 2 and the 

denominator is the time t which gives the 
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order of magnitude. Critical energy,  

E= gravitational self-energy. The idea is an 

integral aspect of pragmatism. The 

penultimate goal of thought is to have correct 

representations of the world, and these are 

ultimately grounded for the pragmatist in the 

goal of effective action in the world (Figure 2). 

 

 
Fig. 2: Tubulin Heterodimers. 

 

 
Fig. 3: Protofilament. 

 

The Effects of the Uncertainty Principle 

There exists an operator P in quantum 

mechanics called a projection operator which 

satisfies the relation PP=P and hence the 

predicted feedback YES may be given by the 

formula: 

/P TrP Tr 
        (2) 

Where;  is the operator (density matrix) that 

represents the system upon which the 

measurement action is performed. This 

formula connects the physical description of 

the system that is being examined to an 

empirical (i.e., experiential) feedback from the 

probing action that the agent performs 

(Figure 3). 
3

2

R M T

KNe s


                                  (3) 

 
4

3
dipole

R M T

Keps


                      (4) 

 

If we apply Eq. (4) with R, M and s having the 

same order of magnitude of the values used by 

Tegmark, but using for the tubulin dipole 

momentum and considering the direction of 

the microtubule axis the value p=10
27

 cm, we 

go back to our previous result, t=10
10

 s. 

 

RESULTS AND DISCUSSION 
We have criticized Eq. (3) used by Tegmark 

because it predicts that the decoherence time, 

increases with the square root of the 

temperature [7]. We can see from very general 

Eqs. (1) and (2) that time t decreases when 

temperature T increases. On the contrary, 

according to Eq. (3) of Tegmark at low 

temperature, where the interaction with the 

environment must be minimal, the 

decoherence is faster, in contradiction with 

experience. Coherent macroscopic states, such 

as superconductivity, happen at temperature 

approaching zero. We show in what follows 

that Tegmarks formula is not valid at low 

temperature [8]. This is not the case of the 

human body but it shows that Tegmark's 

 

α α β α β α β 
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estimates cannot be used generally [9]. That is, 

the Eqs. (3) and (4) are just an approximation 

for a right regime of temperature. To discuss 

Tegmark Eq. (3), let us consider the density 

matrix for the positions of the two particles 1 

(charged macromolecule) and 2 

(environmental ion) interacting through a 

potential V(r). From the Schrodinger equation 

for density matrix r the system evolves as: 

( , ) [ , ( , )]
d

r t H r t
dt




                   (5) 

Here; H is the Hamiltonian of system. In this 

case, we assume H=V(r); therefore, we have:  

2

1 2 1 2[ , , , ) (0)exp [ ( ) ( )]
i

r P F F t V R V R t
h

 
 

      

                                                          (6) 

Here; 

2 1R r r 
 

2 1R r r  
                                             (7) 

 

Decoherence drops the nondiagonal part of the 

macroparticle 1 reduced density operator due 

to the interaction with particle 2; when we 

assume that systems 1 and 2 start in a tensorial 

product state 1 2  
, the density operator 

is averaged by tracing over the environment 

[10]. The result is: 

1 1 2 1 2 2 1 2 1 1( , , ) [ ( , , , )] ( , , )exp( )      r r t Tr r r r t r r t t ror r r

                                                          (8) 

That is, nondiagonal part vanishes for t>1. To 

obtain this result, we choose: 

1 (0,0,0)r 
 

1 1 1 1( , , )r x y z 
 

2 2 2( , ,0)r r x d  
                                (9) 

The first two relations mean a coordinate axis 

choice, while the last one means an 

approximation where the environmental ion 

(particle 2) moves along the x-axis (d is a 

constant) and the change of direction of its 

motion is neglected in the interaction, assumed 

as too small [11–13]. The shortest distance 

from it to the particle 1 is d. So; 

2R r
                    (10) 

2 1R r r  
                   (11) 

We can expand the Coulomb potential up to 

the second order term, 

1 2 1
1 2 1 2 3

2 1 2 2

1 1
( )

| | | | | |

x x y d
V R Kq q Kq q

r r r r

 
      

And hence; 

1 2 1
1 2 3

2

( ) ( )
| |

x x y d
V R V R Kq q

r

 
   

      (12) 

Where; q1 and q2 are the charges of particles 1 

and 2. The next step is to assume a separable 

form for the density matrix and a Gaussian 

distribution with zero mean and variance 

2  for particle 2, 
2

2
1 2

(0)
(4 , , ) exp

24

x
r r t






  
   

  


 

1 2 1 2 1

2 2 3/ 2

2

exp
Kq q t x x y d

dxy
ih x d t

  
          (13) 

For d>>x2 we can approximate 
2 2 3/ 2 3

2 2( )x d d 
 and with an appropriate 

algebraic manipulation, Eq. (13) becomes: 
2

1 1 2 1 1 2

2 3
expt

ty Kq q tx Kq q
C

ihd hd




  
    

  
 

Here; 
22

1 1 2
23

exp
2

x itx Kq q
dx

hd









   
      

   


                                                         (14) 

1(0)

4
C






 
The last integration in Eq. (14) yields a 

constant number; the first imaginary term in 

the exponential is a phase factor, while the 

second one produces a decrease of the 

nondiagonal part of the density matrix with a 

characteristics decoherence time, 
3

1 1 2

hd

x Kq q





.                              (15) 

If we assume thermal constraint 
2( ) / M T    and take uncertainty 

principle 
1/2/ ( )x h M T   as Tegmark 

did, we rescue Eq. (3). 

 

The square root of T  in the numerator of 

Eq. (15) depends on the approximation used 
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d and 2x d .  However, if we use a 

much broader function to represent the 

environmental ion in the density matrix, such 

that it vanishes effectively for 2x d , 

the situation is changed in the Eq. (13). 

1 2 1 1
1 1 2 2 2 3/ 2

1
( , , ) exp

4 ( )

Kq q t x y d
r r t C

ih d






 
    


                                                        (16) 

The integral above will vanish if the imaginary 

exponential oscillates upwards too close to the 

limit, producing a cancellation between 

positive and negative parts of the function in 

the integration, which vanishes when 
2 2 3/ 2 2

1 2 1 1 1 2 1

( )h d h
t

Kq q x y d Kq q x

 






    (17) 

By simple inspection we see that, with 
1/2/ ( )h M T  , the factor T goes down 

to the denominator in Eq. (17), as usual, 

differently from the Tegmark Eq. (3): 
3

1 2 1

1 h

Kq q x M T





                              (18) 

Corresponding dipole potential can be written 

as: 

2 2 2 2 1

3 4

2 2 2

.( ) . 3 . | |
( )

| | | | | |

p r r r r r
V R Kq Kq

r r r r

    
      

                                                        (19) 

From Eq. (5) and taking all previous 

considerations, 

Density matrix of the system= 
2

22 1
1 2 22 2 2

2

3 | |
.( , , ) exp

2 ( )

x y

t

p x p dx r Kq
r r t C t dx

ih x d




    
     

     


                                                        (20) 

For a regime where 2d x  we can 

approximate 
2 2 2 4

2 2( )x d d   and therefore; 

2

3
dipole

d M T

Kqps


  

                 (21) 

Where; we assume cos( )xp p   with 

dipole =sec() and |r|=S. Now, if we consider 

another regime with a broad function to 

represent the environment, so that it vanishes 

effectively for 2x d , where, 

1/2/ ( )h M T  . 

4 3/ 2( )

3
dipole

h M T

Kqps


  

                 (22) 

Eq. (22) shows that in the very low 

temperature regime our calculations for the 

dipole case yield a result compatible with the 

high decoherence time in the limit of very low 

temperature, as does Tegmark's [7]. 

 

CONCLUSIONS 
In spite of our disagreement with Tegmarkv, 

concerning his refutation of the quantum brain 

together with the Hameroff and Penrose OOR 

model [14, 6]. We have shown that our 

calculation does not agree with the response to 

Tegmark's paper by Hagan et al. [8]. We still 

propose a new quantum model in the brain 

where the most important thing is the sequence 

of coherent states accumulating in the 

microtubule. In this manner, the quantum 

activity could appear in another formulation 

for the brain [15]. The quantum models of the 

mind and their applications to individual and 

collective behavioural changes and the 

mitigation of the chaotic effects of BIS 

catastrophies on the global scale have been 

established. 
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