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1. INTRODUCTION 

 

In the quantum information and computation 

theory, quantum entanglement, a non-classical 

correlation, is the key resource and the most 

remarkable feature. Quantum entanglement 

was first introduced by Einstein, Podolsky and 

Rosen (EPR) [1] and also Schrödinger [2]. 

There was a question in [1] by EPR, whether 

quantum mechanics is local and complete 

theory or not. In this context, Bell [3] has 

given a very significant result: the well-known 

Bell’s Inequality and the consequent features 

of quantum mechanics are usually called non-

local theory. It is accepted that quantum 

entanglement is responsible for the non-

locality of quantum mechanics and the 

performances of so many information theoretic 

tasks like teleportation, dense coding, cloning 

and many others [4–6]. Hence, 

characterization and quantification of quantum 

entanglement are the most important tasks of 

quantum information and computation theory. 

 

But, there exist non-classical correlations other 

than entanglement for a composite system. 

Quantum entanglement is quantifiable. 

Practical application of it demands 

quantification. Von-Neumann Entropy, 

entropy of entanglement for pure state 

entanglement [7], entanglement of formation, 

distillability [8–14], and concurrence [15, 16] 

are the very useful measures of quantum 

entanglement – a non-classical correlation. 

Now, the most popular measure introduced by 

Olliver and Zurek [17] and separately by 

Hendersen and Vedral [18] is quantum discord 

– which is much better than the other measures 

and can find out non-classical correlations 

even in separable states. Quantum discord 

brought as an information theoretic measure of 

the “quantumness” of correlations [19] and is 

used to determine some results in 

thermodynamics [20]. Characterizing 

correlations in terms of its quantum discord, it 

is proved that classical correlations lead to 

completely positive reduced dynamics and the 

induced maps can be completely non-positive 
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when quantum correlation is present [21] and 

completely positive (CP) maps arise 

exclusively from the class of separable states 

with vanishing quantum discord [22]. Use of 

quantum discord for characterization of 

correlations present in the quantum 

computational model DQC1, introduced by 

Knill and Laflamme, reveals that non-zero 

values of discord indicate non-classical 

correlations whenever there is no 

entanglement between the two parts [23]. A 

large amount of discord is found but no 

entanglement in the experiment by the 

implementation of DQC1 in an all-optical 

architecture [24]. Also, in the DQC1 model, it 

is proved that a non-zero quantum discord 

implies a non-zero shift under locally non-

effective unitary operations (LNUs) [25]. In 

the dissipative dynamics of two-qubit quantum 

discord under Markovian environments, 

comparison of  the dynamics of entanglement 

with that of quantum discord was made and 

shown that the entanglement suddenly 

disappears in all cases where quantum discord 

vanishes only in the asymptotic limit as the 

individual decoherence of the qubits, also in 

finite temperature, which concludes that 

quantum discord is more robust than the 

entanglement against decoherence so that 

quantum algorithms depending on the 

correlation “quantum discord’ may be more 

robust than those based on quantum 

entanglement [26]. Study of quantum discord 

for two-qubit states gives that for separable 

states, the entanglement of formation always 

vanishes but discord does not vanish, implying 

the superiority of quantum discord [27]. 

 

In our present discussion, we are concentrating 

in the quantification of quantum discord. 

 

2. CONCEPT OF QUANTUM DISCORD 

 

Now, we know that a bipartite quantum state 

has both classical and quantum correlations. 

An information theoretic measure of a 

bipartite quantum state is “quantum mutual 

information.” Let the two parts be A and B and 

their corresponding Hilbert spaces AH  and 

BH  respectively. If we consider a density 

operator 
AB  in BA HH   of the composite 

bipartite system AB, and )( BA   the density 

operators of part A(B) respectively, then the 

quantum mutual information is defined as:  

       ABBAAB SSSI                                                              

where     2logtrS   is the von 

Neumann entropy. 

Mutual information is the maximum amount 

of information that A can securely send to B if 

a composite correlated quantum state is used 

as the key for a one-time pad cryptographic 

system [28]. Quantum mutual information is 

the sum of classical correlation  ABC   and 

quantum correlation  ABD  , that is, 

      ABABAB DCI    

This quantum part  ABD   is called quantum 

discord. 
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Now, the mutual information may be written 

as: 

     ABAB SSI  /  

where      AABAAB SSS  /  

denotes quantum conditional entropy. 

Let the projection operator  B  represent a 

von Neumann measurement for subsystem B 

only, then the conditional density operator 

K associated with the measurement result K 

is  

   KA

AB

KA

K

AB

K BIBI
p

 
1

 

where the probability 

    KA

AB

KAK BIBItrp    

Then the quantum conditional entropy with 

respect to this measurement is given by  

   
K

KKK

AB SpBS  }/{  

And the associated quantum mutual 

information of this measurement is defined as: 

     }/{/ K

A

K

AB BSSBI    

Classical correlation is given by [17, 18, 27, 

29]  

   }/{
}{

K

AB

B

AB BISupC
K

   

Calculating  ABC   is difficult because it can 

be obtained by taking maximum over all 

possible measurement of B. If however, we 

can find  ABC   then quantum discord is 

found by              ABABAB CID   . 

 

3. REVIEW OF INCOMPARABILITY 

UNDER DETERMINISTIC LOCC 

 

Entanglement transformation is a very 

fundamental problem in quantum information. 

Here, we deal with the question that if   be 

a pure bipartite state then is it possible to 

transform   to another state   by using 

LOCC? Majorization [4] resolves the question. 

Let ),......,,,( 321 dxxxxx  and 

),.......,,,( 321 dyyyyy  be real d-

dimensional vectors. Then x is majorized by y 

(equivalently y majorizes x), written as yx  , 

if for each k in the range 1, 2, 3,…d, 








 
k

j

j

k

j

j yx
11

, 

where equality holds for k = d, and where the 

  indicates that the components are in 

decreasing order. Let   be the state of the 

first obtained by taking trace on second party 

and   be the vector of eigen values of  . 

Then  

 

Theorem [5]:   transforms to   using 

LOCC if and only if   is majorized by   or 

   if     where    

indicates that   transforms to  . 

 

If    is not possible with probability 

one under LOCC, then we denote this by   

  . But it may be possible that 

   under LOCC with probability one. 

If for a pair of pure bipartite state ( ),  , 
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   and    both happen then 

we call ( ),   a pair of incomparable 

states. 

 

In 22  systems, there do not exist 

incomparable pairs of states. But in 33  

systems, incomparable pairs of states exist. 

For the criterion of incomparability for a pair 

of pure entangled states   ,  of nm  

systems where min{m, n} = 3, we have the 

following way. Let  

321 ,, aaa  and 

 

321 ,, bbb  be the Schmidt vectors 

corresponding to the states   and   

respectively and  

 
 

 
3

1

3

1i i

ii ba   

Then it can be obtained from Nielsen’s 

criterion that   and   are incomparable if 

and only if either 332211 baabba   or 

332211 abbaab  . All the above studies are 

for the deterministic transformation. 

                  

4. ANALYTICAL APPROACH IN 

QUANTIFICATION PROCEDURE OF 

DISCORD 

 

It is briefly discussed and completely 

explained [30] that for two-qubit X-states 

quantum discord can be found. The method 

applied for finding quantum discord has 

required the use of the von-Neuman 

measurements for the subsystem B as  

1,0,   iVVB ii  

where iii   is the projector for the 

subsystem B for the basis i  and 

)2(SUV  . 

Here, we are emphasizing on a bipartite three-

qubit system. So, here the von-Neuman 

measurement for the subsystem B is  

Bi = VПiV
†
, i =0,1,2. 

where iii   is the projector for the 

subsystem B for the basis i  and )3(SUV  . 

Any element in )3(SU can be expressed as  

)exp(
8

1

j

j

j giV 


   

where j  are real numbers and 
2

j

jg


  

where  

   



















000

001

010

1  , 















 



000

00

00

2 i

i

 , 



















000

010

001

3 ,  

  



















001

000

100

4 ,  















 



001

000

100

5 , 



















010

100

000

6  

  



















00

00

000

7

i

i , 





















200

010

001

3

1
8 . 
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We see that 

.........753  jjjj   

and ........642  jjj  , for 8,......,3,2,1j  

 

These yield 

,

100

021cos2sin

02sin2cos

2
exp 1

11

11


































i

i

i

 

              

,

100

02cos2sin

02sin2cos

2
exp 22

22

22















 














i

i  

 

 

  ,

100

02exp0

002exp

2
exp 3

3

33






























i

i

i

 

              


































2
cos0

2
sin

010
2

sin0
2

cos

2
exp

44

44

44







i

i

i , 































2
cos0

2
sin

010
2

sin0
2

cos

2
exp

55

55

55






i , 

  


































2
cos

2
sin0

2

6
sin

2
cos0

001

2
exp

66

666





i

ii , 
































2
cos

2
sin0

2
sin

2
cos0

001

2
exp

77

7788




i , 






























































32
exp00

0
32

exp0

00
32

exp

2
exp

8

8

8

88









i

i

i

i

. 

Using all these results, the expression of V in 

[30] is given by: 























crq

rbp

qpa

V  

where 
2

sin
2

sin 12 
ip  , 

2
sin

2
sin 45 

iq  , 
2

sin
2

sin 67 
ir   

  
2

3
sin


imla  , 

2
sin 3inlb  , 











3
exp1 8inmc , 

  and 
















32
exp

2
cos

2
cos

2
cos1 8321 

il

, 
2

cos
2

cos1 54 
m , 

2
cos

2
cos1 76 

n . 

Then  

V
†





















crq

rbp

qpa

 

Now, von-Neumann measurements for subsystem B are 
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       Bi = VПiV
†
, i = 0,1,2. 

where iii  . 

B0, B1, B2 are expressed as  




















2

2

2

0

qpqaq

qppap

aqapa

B , 


























2

2

2

1

rbrpr

brbpb

prbpp

B , 


























2

2

2

2

ccrcq

crrqr

cqrqq

B . 

Let us consider an example to clarify such concept for two patite three qubit system by taking an 

arbitrary state 

                              221100 321  
AB

, 12

3

2

2

2

1    

Then 







































2

33213

32

2

221

1321

2

1

000000

000000000

000000000

000000000

000000

000000000

000000000

000000000

000000







 AB

 

and the expression for 03 BI   is found as  







































2

2

2

2

2

2

2

2

2

03

000000

000000

000000

000000

000000

000000

000000

000000

000000

qpqqa

qpppa

aqapa

qpqqa

qpppa

aqapa

qpqqa

qpppa

aqapq

BI

                  

So, for calculating the ensemble  ii p,  for the state AB , we know that 

   iABi

i

i BIBI
p

 
1

 

and      .2,1,0,  iBIBItrp iABii   

Here, we get  

    iABii BIBItrp    

  2

3

22

2

22

1

2222
 qpaqpa  . 
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Hence, the eigen values of 0 , 1 and 2  are 1,0,0,0,0,0,0,0,0. 

These give  

        221100/  SpSpSpBS iAB   0  

The classical correlation coefficient becomes 

      iAB
B

A

ABAB BSSC
i

/min    A

ABS   

So, the quantum discord  

     ABABAB CIQ    

     A

ABj

j

jAB

A

AB SSS   


log
8

1

B
 

 B

ABS   as 0log
8

1




j

j

j  . 

 

For AB , 221100 2

3

2

2

2

1  B

AB  yields: 

   2

32

2

3

2

22

2

2

2

12

2

1 logloglog  B

ABS  

  2

2

3

1

2 log i

i

iABQ  


 . 

And for bipartite qubit systems, we have  

ii
d

i

i



1

 , 

we get     2

2

1

2 log i

d

i

iABQ  


  

which is von-Neumann entropy of the reduced system of AB . 

 

4.1. Monotonicity of Quantum Discord 

under Deterministic Incomparability 

In this section, our attempt is to observe the 

monotonic nature of quantum discord under 

deterministic incomparability LOCC. For this, 

consider 



3

1i

BAi ii  and 

BA

i

i ii



3

1

  where  Ai  and  Bi  are 

the orthogonal basis of the respective Hilbert  

 

 

spaces AH  and BH . Now, the observations 

on the analytic expression of quantum discord 

really establish the fact that 

Discord    > < Discord    according to 

the numerical values of  i  and  
j  

 I = 1,2,3. So, in general we have no such 

stick monotonic nature of the quantum discord 

of the two incomparable pairs   , .  
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5. CONCLUSIONS 

 

In this paper, our aim is to find out the 

mathematical difficulties in the calculating 

procedure of quantum discord. We observe 

that even in 33 , the large expression of 

elements of the matrix is really hard to handle. 

So, it prevents us from finding the eigen 

values of the matrices. The next big problem is 

due to the optimization that occurs in the 

expression of the quantum discord. So, finding 

the general expression of quantum discord in 

the above mathematical process is really a 

great challenge to the people. 
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