The Problem Involving the Quantification of Quantum Discord

Amit Bhar ${ }^{1}$ *, Sujoy Das ${ }^{2}$
${ }^{1}$ Jogesh Chandra Chaudhuri College, Kolkata-700033, India
${ }^{2}$ Kamaria High Madrasah (School), Kamaria, Joynagar, South 24 Paraganas, India

Abstract

For the last few years, people are concentrating on studying different aspects of non-locality of quantum mechanics. Many correlation measures have been introduced and well-studied. Quantum discord is one of such correlation measures that creates new challenges among the physicists and mathematicians. New quantification of quantum discord is one of the fascinating areas. In this paper, we study for the investigation of the difficulties in finding the analytic expression of quantum discord.

Keywords: Quantum entanglement, quantum discord, incomparability, LOCC
*Author for Correspondence E-mail: bhar.amit@yahoo.com

1. INTRODUCTION

In the quantum information and computation theory, quantum entanglement, a non-classical correlation, is the key resource and the most remarkable feature. Quantum entanglement was first introduced by Einstein, Podolsky and Rosen (EPR) [1] and also Schrödinger [2]. There was a question in [1] by EPR, whether quantum mechanics is local and complete theory or not. In this context, Bell [3] has given a very significant result: the well-known Bell's Inequality and the consequent features of quantum mechanics are usually called nonlocal theory. It is accepted that quantum entanglement is responsible for the nonlocality of quantum mechanics and the performances of so many information theoretic tasks like teleportation, dense coding, cloning and many others [4-6]. Hence, characterization and quantification of quantum entanglement are the most important tasks of quantum information and computation theory.

But, there exist non-classical correlations other than entanglement for a composite system. Quantum entanglement is quantifiable. Practical application of it demands quantification. Von-Neumann Entropy, entropy of entanglement for pure state entanglement [7], entanglement of formation, distillability [8-14], and concurrence [15, 16] are the very useful measures of quantum entanglement - a non-classical correlation. Now, the most popular measure introduced by Olliver and Zurek [17] and separately by Hendersen and Vedral [18] is quantum discord - which is much better than the other measures and can find out non-classical correlations even in separable states. Quantum discord brought as an information theoretic measure of the "quantumness" of correlations [19] and is used to determine some results in thermodynamics [20]. Characterizing correlations in terms of its quantum discord, it is proved that classical correlations lead to completely positive reduced dynamics and the induced maps can be completely non-positive
when quantum correlation is present [21] and completely positive (CP) maps arise exclusively from the class of separable states with vanishing quantum discord [22]. Use of quantum discord for characterization of correlations present in the quantum computational model DQC1, introduced by Knill and Laflamme, reveals that non-zero values of discord indicate non-classical correlations whenever there is no entanglement between the two parts [23]. A large amount of discord is found but no entanglement in the experiment by the implementation of DQC1 in an all-optical architecture [24]. Also, in the DQC1 model, it is proved that a non-zero quantum discord implies a non-zero shift under locally noneffective unitary operations (LNUs) [25]. In the dissipative dynamics of two-qubit quantum discord under Markovian environments, comparison of the dynamics of entanglement with that of quantum discord was made and shown that the entanglement suddenly disappears in all cases where quantum discord vanishes only in the asymptotic limit as the individual decoherence of the qubits, also in finite temperature, which concludes that quantum discord is more robust than the entanglement against decoherence so that quantum algorithms depending on the correlation "quantum discord' may be more robust than those based on quantum entanglement [26]. Study of quantum discord for two-qubit states gives that for separable states, the entanglement of formation always
vanishes but discord does not vanish, implying the superiority of quantum discord [27].

In our present discussion, we are concentrating in the quantification of quantum discord.

2. CONCEPT OF QUANTUM DISCORD

Now, we know that a bipartite quantum state has both classical and quantum correlations. An information theoretic measure of a bipartite quantum state is "quantum mutual information." Let the two parts be A and B and their corresponding Hilbert spaces H_{A} and H_{B} respectively. If we consider a density operator $\rho^{A B}$ in $H_{A} \otimes H_{B}$ of the composite bipartite system $A B$, and $\rho^{A}\left(\rho^{B}\right)$ the density operators of part $A(B)$ respectively, then the quantum mutual information is defined as:
$I\left(\rho^{A B}\right)=S\left(\rho^{A}\right)+S\left(\rho^{B}\right)-S\left(\rho^{A B}\right)$
where $S(\rho)=-\operatorname{tr}\left(\rho \log _{2} \rho\right)$ is the von Neumann entropy.
Mutual information is the maximum amount of information that A can securely send to B if a composite correlated quantum state is used as the key for a one-time pad cryptographic system [28]. Quantum mutual information is the sum of classical correlation $C\left(\rho^{A B}\right)$ and quantum correlation $D\left(\rho^{A B}\right)$, that is,

$$
I\left(\rho^{A B}\right)=C\left(\rho^{A B}\right)+D\left(\rho^{A B}\right)
$$

This quantum part $D\left(\rho^{A B}\right)$ is called quantum discord.

Now, the mutual information may be written as:
$I\left(\rho^{A B}\right)=S\left(\rho^{B}\right)-S\left(\rho / \rho^{A}\right)$
where $S\left(\rho^{A B} / \rho^{A}\right)=S\left(\rho^{A B}\right)-S\left(\rho^{A}\right)$
denotes quantum conditional entropy.
Let the projection operator $\left\{B_{\lambda}\right\}$ represent a von Neumann measurement for subsystem B only, then the conditional density operator ρ_{K} associated with the measurement result K is

$$
\rho_{K}^{A B}=\frac{1}{p_{K}}\left(I_{A} \otimes B_{K}\right) \rho^{A B}\left(I_{A} \otimes B_{K}\right)
$$

where the probability

$$
p_{K}=\operatorname{tr}\left[\left(I_{A} \otimes B_{K}\right) \rho^{A B}\left(I_{A} \otimes B_{K}\right)\right]
$$

Then the quantum conditional entropy with respect to this measurement is given by

$$
S\left(\rho^{A B} /\left\{B_{K}\right\}\right)=\sum_{K} p_{K} S\left(\rho_{K}\right)
$$

And the associated quantum mutual information of this measurement is defined as:

$$
I\left(\rho^{A B} / B_{K}\right)=S\left(\rho^{A}\right)-S\left(\rho /\left\{B_{K}\right\}\right)
$$

Classical correlation is given by $[17,18,27$, 29]

$$
C\left(\rho^{A B}\right)=\operatorname{Sup}_{\left\{B_{K}\right\}} I\left(\rho^{A B} /\left\{B_{K}\right\}\right)
$$

Calculating $C\left(\rho^{A B}\right)$ is difficult because it can be obtained by taking maximum over all possible measurement of B. If however, we can find $C\left(\rho^{A B}\right)$ then quantum discord is found by $\quad D\left(\rho^{A B}\right)=I\left(\rho^{A B}\right)-C\left(\rho^{A B}\right)$.

3. REVIEW OF INCOMPARABILITY UNDER DETERMINISTIC LOCC

Entanglement transformation is a very fundamental problem in quantum information. Here, we deal with the question that if $|\psi\rangle$ be a pure bipartite state then is it possible to transform $|\psi\rangle$ to another state $|\phi\rangle$ by using LOCC? Majorization [4] resolves the question.

Let

$$
x \equiv\left(x_{1}, x_{2}, x_{3}, \ldots \ldots, x_{d}\right) \text { and }
$$

$y \equiv\left(y_{1}, y_{2}, y_{3}, \ldots \ldots ., y_{d}\right)$ be real ddimensional vectors. Then x is majorized by y (equivalently y majorizes x), written as $x \prec y$, if for each k in the range $1,2,3, \ldots \mathrm{~d}$,
$\sum_{j=1}^{k} x_{j}^{\downarrow} \leq \sum_{j=1}^{k} y_{j}^{\downarrow}$,
where equality holds for $k=d$, and where the \downarrow indicates that the components are in decreasing order. Let ρ_{ψ} be the state of the first obtained by taking trace on second party and λ_{ψ} be the vector of eigen values of ρ_{ψ}. Then

Theorem [5]: $|\psi\rangle$ transforms to $|\phi\rangle$ using LOCC if and only if λ_{ψ} is majorized by λ_{ϕ} or $|\psi\rangle \rightarrow|\phi\rangle \quad$ if $\lambda_{\psi} \leq \lambda_{\phi} \quad$ where $\quad|\psi\rangle \rightarrow|\phi\rangle$ indicates that $|\psi\rangle$ transforms to $|\phi\rangle$.

If $|\psi\rangle \rightarrow|\phi\rangle$ is not possible with probability one under LOCC, then we denote this by $|\psi\rangle$ $\nrightarrow|\phi\rangle$. But it may be possible that $|\psi\rangle \rightarrow|\phi\rangle$ under LOCC with probability one. If for a pair of pure bipartite state $(|\psi\rangle,|\phi\rangle)$,
$|\psi\rangle \nrightarrow|\phi\rangle$ and $|\phi\rangle \nrightarrow|\psi\rangle$ both happen then we call $(|\psi\rangle,|\phi\rangle)$ a pair of incomparable states.

In 2×2 systems, there do not exist incomparable pairs of states. But in 3×3 systems, incomparable pairs of states exist. For the criterion of incomparability for a pair of pure entangled states $(|\psi\rangle,|\phi\rangle)$ of $m \times n$ systems where $\min \{m, n\}=3$, we have the following way. Let $\left(a_{1}^{\downarrow}, a_{2}^{\downarrow}, a_{3}^{\downarrow}\right)$ and $\left(b_{1}^{\downarrow}, b_{2}^{\downarrow}, b_{3}^{\downarrow}\right)$ be the Schmidt vectors corresponding to the states $|\psi\rangle$ and $|\phi\rangle$ respectively and
$\sum_{i=1}^{3} a_{i}^{\downarrow}=\sum_{i=1}^{3} b_{i}^{\downarrow}$
Then it can be obtained from Nielsen's criterion that $|\psi\rangle$ and $|\phi\rangle$ are incomparable if and only if either $\left.\left.\left.\left.\left.a_{1}\right\rangle b_{1}\right\rangle b_{2}\right\rangle a_{2}\right\rangle a_{3}\right\rangle b_{3}$ or $\left.\left.\left.\left.\left.b_{1}\right\rangle a_{1}\right\rangle a_{2}\right\rangle b_{2}\right\rangle b_{3}\right\rangle a_{3}$. All the above studies are for the deterministic transformation.

4. ANALYTICAL APPROACH IN QUANTIFICATION PROCEDURE OF DISCORD

It is briefly discussed and completely explained [30] that for two-qubit X-states quantum discord can be found. The method applied for finding quantum discord has required the use of the von-Neuman measurements for the subsystem B as
$B_{i}=V \Pi_{i} V^{\uparrow}, i=0,1$
where $\Pi_{i}=|i\rangle\langle i|$ is the projector for the subsystem $\quad B$ for the basis $|i\rangle$ and $V \in S U(2)$.

Here, we are emphasizing on a bipartite threequbit system. So, here the von-Neuman measurement for the subsystem B is
$B_{i}=\mathrm{V}_{\mathrm{i}} \mathrm{V}^{\dagger}, i=0,1,2$.
where $\Pi_{i}=|i\rangle\langle i|$ is the projector for the subsystem B for the basis $|i\rangle$ and $V \in S U(3)$. Any element in $S U(3)$ can be expressed as $V=\exp \left(i \sum_{j=1}^{8} \theta_{j} g_{j}\right)$
where θ_{j} are real numbers and $g_{j}=\frac{\lambda_{j}}{2}$
where

$$
\begin{array}{ll}
\lambda_{1}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \lambda_{2}=\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \\
\lambda_{3}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right), \\
\lambda_{4}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right), \\
\lambda_{6}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \\
\lambda_{7}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -i \\
0 & i & 0
\end{array}\right), \lambda_{8}=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}
0 & 0 & -1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right),
\end{array}
$$

We see that
$\lambda_{j}=\lambda_{j}^{3}=\lambda_{j}^{5}=\lambda_{j}^{7}=$ \qquad
and $\lambda_{j}^{2}=\lambda_{j}^{4}=\lambda_{j}^{6}=$ \qquad for $j=1,2,3, \ldots . . ., 8$

$$
\exp \left(i \frac{\theta_{8} \lambda_{8}}{2}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \frac{\theta_{7}}{2} & -\sin \frac{\theta_{7}}{2} \\
0 & \sin \frac{\theta_{7}}{2} & \cos \frac{\theta_{7}}{2}
\end{array}\right),
$$

These yield
$\exp \left(i \frac{\theta_{1} \lambda_{1}}{2}\right)=\left(\begin{array}{ccc}\cos \theta_{1} / 2 & -i \sin \theta_{1} / 2 & 0 \\ -i \sin \theta_{1} / 2 & \cos \theta 1 / 2 & 0 \\ 0 & 0 & 1\end{array}\right)$,

$$
\exp \left(i \frac{\theta_{8} \lambda_{8}}{2}\right)=\left(\begin{array}{ccc}
\exp \left(i \frac{\theta_{8}}{2 \sqrt{3}}\right) & 0 & 0 \\
0 & \exp \left(i \frac{\theta_{8}}{2 \sqrt{3}}\right) & 0 \\
0 & 0 & \exp \left(-i \frac{\theta_{8}}{2 \sqrt{3}}\right)
\end{array}\right)
$$

$$
\exp \left(i \frac{\theta_{2} \lambda_{2}}{2}\right)=\left(\begin{array}{ccc}
\cos \theta_{2} / 2 & -i \sin \theta_{2} / 2 & 0 \\
\sin \theta_{2} / 2 & \cos \theta_{2} / 2 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Using all these results, the expression of V in [30] is given by:

$$
V=\left(\begin{array}{ccc}
a & -p & -q \\
\bar{p} & b & -r \\
\bar{q} & \bar{r} & c
\end{array}\right)
$$

$$
\exp \left(i \frac{\theta_{3} \lambda_{3}}{2}\right)=\left(\begin{array}{ccc}
\exp \left(i \theta_{3} / 2\right) & 0 & 0 \\
0 & \exp \left(-i \theta_{3} / 2\right) & 0 \\
0 & 0 & 1
\end{array}\right)
$$

where $p=\sin \frac{\theta_{2}}{2}+i \sin \frac{\theta_{1}}{2}$,

$$
\begin{aligned}
q & =\sin \frac{\theta_{5}}{2}+i \sin \frac{\theta_{4}}{2}, r=\sin \frac{\theta_{7}}{2}+i \sin \frac{\theta_{6}}{2} \\
a & =l+m+i \sin \frac{\theta 3}{2}, \quad b=l+n-i \sin \frac{\theta_{3}}{2} \\
c & =1+m+n+\exp \left(-i \frac{\theta_{8}}{\sqrt{3}}\right)
\end{aligned}
$$

and
$l=1+\cos \frac{\theta_{1}}{2}+\cos \frac{\theta_{2}}{2}+\cos \frac{\theta_{3}}{2}+\exp \left(i \frac{\theta_{8}}{2 \sqrt{3}}\right)$
,$m=1+\cos \frac{\theta_{4}}{2}+\cos \frac{\theta_{5}}{2}$,
$\exp \left(i \frac{\theta_{6} \lambda_{6}}{2}\right)=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \frac{\theta_{6}}{2} & -i \sin \frac{\theta 6}{2} \\ 0 & -i \sin \frac{\theta_{6}}{2} & \cos \frac{\theta_{6}}{2}\end{array}\right)$,
$n=1+\cos \frac{\theta_{6}}{2}+\cos \frac{\theta_{7}}{2}$.
Then
$V^{\dagger}=\left(\begin{array}{ccc}\bar{a} & p & q \\ -\bar{p} & \bar{b} & r \\ \bar{q} & -\bar{r} & \bar{c}\end{array}\right)$
Now, von-Neumann measurements for subsystem B are

$$
B_{i}=V \Pi_{i} V^{\dagger}, i=0,1,2 .
$$

where $\Pi_{i}=|i\rangle\langle i|$.
B_{0}, B_{1}, B_{2} are expressed as

$$
B_{0}=\left(\begin{array}{ccc}
|a|^{2} & a p & a q \\
\bar{p} \bar{a} & |p|^{2} & \bar{p} q \\
\bar{q} \bar{a} & \bar{q} p & |q|^{2}
\end{array}\right), B_{1}=\left(\begin{array}{ccc}
|p|^{2} & -p \bar{b} & -p r \\
-b \bar{p} & |b|^{2} & b r \\
-\overline{r p} & \bar{r} \bar{b} & |r|^{2}
\end{array}\right), B_{2}=\left(\begin{array}{ccc}
|q|^{2} & q \bar{r} & -q \bar{c} \\
r \bar{q} & |r|^{2} & -r \bar{c} \\
-\bar{q} c & -\bar{r} c & |c|^{2}
\end{array}\right) .
$$

Let us consider an example to clarify such concept for two patite three qubit system by taking an arbitrary state

$$
\begin{gathered}
|\psi\rangle_{A B}=\alpha_{1}|00\rangle+\alpha_{2}|11\rangle+\alpha_{3}|22\rangle, \alpha_{1}^{2}+\alpha_{2}^{2}+\alpha_{3}^{2}=1 \\
\text { Then } \rho_{A B}=\left(\begin{array}{ccccccccc}
\alpha_{1}^{2} & 0 & 0 & 0 & \alpha_{1} \alpha_{2} & 0 & 0 & 0 & \alpha_{3} \alpha_{1} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\alpha_{1} \alpha_{2} & 0 & 0 & 0 & \alpha_{2}^{2} & 0 & 0 & 0 & \alpha_{2} \alpha_{3} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\alpha_{3} \alpha_{1} & 0 & 0 & 0 & \alpha_{2} \alpha_{3} & 0 & 0 & 0 & \alpha_{3}^{2}
\end{array}\right)
\end{gathered}
$$

and the expression for $I_{3} \otimes B_{0}$ is found as

$$
I_{3} \otimes B_{0}=\left(\begin{array}{ccccccccc}
|q|^{2} & a p & a q & 0 & 0 & 0 & 0 & 0 & 0 \\
\bar{a} p & |p|^{2} & \bar{p} q & 0 & 0 & 0 & 0 & 0 & 0 \\
\bar{a} \bar{q} & \bar{q} p & |q|^{2} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & |a|^{2} & a p & a q & 0 & 0 & 0 \\
0 & 0 & 0 & \overline{a p} & |p|^{2} & \bar{p} q & 0 & 0 & 0 \\
0 & 0 & 0 & \bar{q} \bar{q} & \bar{q} p & |q|^{2} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & |a|^{2} & a p & a q \\
0 & 0 & 0 & 0 & 0 & 0 & \overline{a p} & |p|^{2} & \bar{p} q \\
0 & 0 & 0 & 0 & 0 & 0 & \bar{a} \bar{q} & \bar{q} p & |q|^{2}
\end{array}\right)
$$

So, for calculating the ensemble $\left\{\rho_{i}, p_{i}\right\}$ for the state $\rho_{A B}$, we know that

$$
\rho_{i}=\frac{1}{p_{i}}\left(I \otimes B_{i}\right) \rho_{A B}\left(I \otimes B_{i}\right)
$$

and $p_{i}=\operatorname{tr}\left[\left(I \otimes B_{i}\right) \rho_{A B}\left(I \otimes B_{i}\right)\right], i=0,1,2$.
Here, we get

$$
\begin{aligned}
& p_{i}=\operatorname{tr}\left[\left(I \otimes B_{i}\right) \rho_{A B}\left(I \otimes B_{i}\right)\right] \\
& =\left(|a|^{2}+|p|^{2}+|q|^{2}\right)\left(|a|^{2} \alpha_{1}^{2}+|p|^{2} \alpha_{2}^{2}+|q|^{2} \alpha_{3}^{2}\right) .
\end{aligned}
$$

Hence, the eigen values of ρ_{0}, ρ_{1} and ρ_{2} are $1,0,0,0,0,0,0,0,0$.
These give
$S\left(\rho_{A B} /\left\{B_{i}\right\}\right)=p_{0} S\left(\rho_{0}\right)+p_{1} S\left(\rho_{1}\right)+p_{2} S\left(\rho_{2}\right)=0$
The classical correlation coefficient becomes

$$
C\left(\rho_{A B}\right)=S\left(\rho_{A B}^{A}\right)-\min _{B_{i}} S\left(\rho_{A B} /\left\{B_{i}\right\}\right)=S\left(\rho_{A B}^{A}\right)
$$

So, the quantum discord
$Q\left(\rho_{A B}\right)=I\left(\rho_{A B}\right)-C\left(\rho_{A B}\right)$
$=S\left(\rho_{A B}^{A}\right)+S\left(\rho_{A B}^{\mathbf{B}}\right)+\sum_{j=1}^{8} \lambda_{j} \log \lambda_{j}-S\left(\rho_{A B}^{A}\right)$
$=S\left(\rho_{A B}^{B}\right)$ as $\sum_{j=1}^{8} \lambda_{j} \log \lambda_{j}=0$.

For $\rho_{A B}, \rho_{A B}^{B}=\alpha_{1}^{2}|0\rangle\langle 0|+\alpha_{2}^{2}|1\rangle\langle 1|+\alpha_{3}^{2}|2\rangle\langle 2|$ yields:
$S\left(\rho_{A B}^{B}\right)=-\left[\alpha_{1}^{2} \log _{2} \alpha_{1}^{2}+\alpha_{2}^{2} \log _{2} \alpha_{2}^{2}+\alpha_{3}^{2} \log _{2} \alpha_{3}^{2}\right]$
$\therefore Q\left(\rho_{A B}\right)=-\sum_{i=1}^{3} \alpha_{i}^{2} \log _{2} \alpha_{i}^{2}$.
And for bipartite qubit systems, we have
$|\psi\rangle=\sum_{i=1}^{d} \alpha_{i}|i i\rangle$,
we get $Q\left(\rho_{A B}\right)=-\sum_{i=1}^{d} \alpha_{i}^{2} \log _{2} \alpha_{i}^{2}$
which is von-Neumann entropy of the reduced system of $\rho_{A B}$.

4.1. Monotonicity of Quantum Discord

under Deterministic Incomparability
In this section, our attempt is to observe the monotonic nature of quantum discord under deterministic incomparability LOCC. For this, consider $\quad|\psi\rangle=\sum_{i=1}^{3} \alpha_{i}\left|i_{A} i_{B}\right\rangle \quad$ and $|\phi\rangle=\sum_{i=1}^{3} \beta_{i}\left|i_{A} i_{B}\right\rangle$ where $\left\{i_{A}\right\}$ and $\left\{i_{B}\right\}$ are the orthogonal basis of the respective Hilbert
spaces H_{A} and H_{B}. Now, the observations on the analytic expression of quantum discord really establish the fact that $\operatorname{Discord}(|\psi\rangle)\rangle\langle\operatorname{Discord}(|\phi\rangle)$ according to the numerical values of $\left\{\alpha_{i}\right\}$ and $\left\{\beta_{j}\right\}$ $\forall \mathrm{I}=1,2,3$. So, in general we have no such stick monotonic nature of the quantum discord of the two incomparable pairs $(|\psi\rangle,|\phi\rangle)$.

5. CONCLUSIONS

In this paper, our aim is to find out the mathematical difficulties in the calculating procedure of quantum discord. We observe that even in $3 \otimes 3$, the large expression of elements of the matrix is really hard to handle. So, it prevents us from finding the eigen values of the matrices. The next big problem is due to the optimization that occurs in the expression of the quantum discord. So, finding the general expression of quantum discord in the above mathematical process is really a great challenge to the people.

REFERENCES

1. A. Einstein, B. Podolsky and N. Rosen. Physical Review A. 1935. 47. 777-780p.
2. E. Schrodinger. Naturwissenschaften. 1935. 23. 807p.
3. J. S. Bell. Physics 1 1964. 1. 195-200p.
4. W. H. Zurek. Nature. 2000. 404. 130-131p.
5. M. A. Nielsen. Physical Review Letters. 1999. 83. 436-439p.
6. D. Bouwmeester, A. Ekert and A. Zeilinger (Eds.). The Physics of Quantum Information: Quantum Cryptography, Quantum Teleportation and Quantum Computation. New York. Springer. 2000.
7. S. Popescu and D. Virmani. Quantum Information Computation. 2007. 7(1).
8. A. Acin. Physical Review Letters. 2001. 88. 027901.
9. C. H. Bennet, G. Brassard, C. Crepeau, et al. Physical Review Letters.1996. 76. 7229.
10. C. H. Bennett, H. J. Bernstein, S. Popescu, et al. Physical Review Letters A. 1996. 53. 2046.
11. C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, et al, Physical Review A. 1996. 54. 3824.
12. N. J. Cerf, N. Gisin, S. Massar, et al. Physical Review Letters. 2005. 94. 220403.
13. W. Dur, J. I. Cirac, M. Lewenstein, et al. Physical Review A. 2000. 61. 062313.
14. P. W. Shor, J. A. Smolin and B. M. Terhal. Physical Review Letters. 2001. 86. 2681p.
15. W. K. Wootters. Quantum Information \& Computation. 2001. 1(1). 27p.
16. W. K. Wootters. Physical Review Letters. 1998. 80. 2245.
17. H. Olliver and W. H. Zurek. Physical Review Letters. 2001. 88. 017901.
18. L. Henderson and V. Vedral. Journal of Physics A: Mathematics General. 2001. 34. 6899p.
19. W. H. Zurek, Physical Review A. 2003. 67.012320.
20. M. Horodecki, P. Horodecki, R. Horodecki, et al. Physical Review A. 71. 062307.
21. C. A. Rodriguez-Rosario, K. Modi, A. Kuah, et al. Journal of Physics A. 2008. 41. 205301.
22. A. Shabani and D. A. Lidar. Physical Review Letters. 2009. 102. 100402.
23. A. Dutta, A. Shaji, and C. Caves. Physical Review Letters. 2008. 100. 050502.
24. B. P. Lanyon, M. Barbieri, M. P. Almeida, et al. Physical Review Letters. 2008. 101. 200501.
25. A. Dutta and S. Gharibian. Physical Review A. 2009. 79. 042325.
26. F. F. Faanchini, T. Werlang, C. A. Brasil, et al. arXiv:0911.1096.
27. S. Luo, Physical Review A. 2008. 77. 042303.
28. B. Schumacher and M. D. Westmoreland. Physical Review A. 2006. 74. 032317.
29. N. Li and S. Luo, Physical Review A. 2007. 76. 032327; ibid 2008. 77. 022301.
30. M. Ali, A. R. P. Rau and G. Alber. arXiv: 1002.3429 v 1 .
