### Energy-Momentum Dependent Potentials and np Scattering

#### Abstract

Energy-dependent equivalent local potential corresponding to a rank 2 nonlocal interaction is

constructed for the partial wave 0 and the higher partial wave equivalent local

interactions are developed by exploiting the formalism of super symmetry formalism. The

merit of our constructed potentials is judged through a model calculation. Our results are in

good agreement with standard data.

Keywords: Equivalent local potential, non-local potential, scattering phase shifts, super symmetry formalism

Cite this Article

Ashwini Kumar Behera, Ujjwal Laha, Madhura Majumder, Jhasaketan Bhoi. Energy-Momentum Dependent Potentials and np Scattering. Research & Reviews: A Journal of Life Sciences. 2019; 9(3): 1–9p.

#### Keywords

#### Full Text:

PDF#### References

MacGregor M H, Arndt R A and Wright R M. Determination of the Nucleon-Nucleon

Scattering Matrix. X. (p,p) and (n,p) Analysis from 1 to 450 MeV. Phys. Rev. 1969 ; 182: 1714.

Seamon R E, Friedman K A, Breit G, Haracz R D, Holt J M and Prakash A. Phenomenological Phase-Parameter Fits to N−N Data up to 350 MeV. Phys. Rev. 1968 ; 165: 1579.

Arndt R A, Roper L D, Bryan R A, Clark R B, VerWest B J and Signell P. Nucleon-nucleon partial-wave analysis to 1 GeV. Phys. Rev. D. 1983; 28: 97.

Machleidt R. High-precision, charge-dependent Bonn nucleon-nucleon potential. Phys. Rev. C. 2001; 63: 024001.

Feshbach H. Theoretical Nuclear Physics: Nuclear Reactions, New York: Wiley; 1992.

Machleidt R and Slaus I J. The nucleon-nucleon interaction. Phys. G: Nucl. Part. Phys. 2001; 27: R69.

Allgower C E, Ball J, Barabash L S, Beauvais Y P, Beddo M E, Borisov N, Boutefnouchet N , Bystricky J, Chamouard P A and Combet M. Angular dependence of the pp elastic scattering spin correlation parameter A00nn between 0.8 and 2.8 GeV: Results for 1.80–2.24.GeV Phys. Rev. C. 2000 ; 62: 064001.

Lechanoine-Leluc C and Lehar F. Nucleon-nucleon elastic scattering and total cross sections. Rev. Mod. Phys. 1993 ; 65: 47.

Wiringa R B, Stoks V G J and Schiavilla R. Accurate nucleon-nucleon potential with charge- independence breaking .Phys. Rev.C. 1995 ; 51: 38.

Gross F and Stadler A. Covariant spectator theory of np scattering: Phase shifts obtained from precision fits to data below 350 MeV. Phys. Rev. C . 2008 ; 78: 014005.

Schwinger W, Plessas W, Kok L P and Haeringen H. van. Separable representation of the nuclear proton-proton interaction. Phys. Rev. C. 1983 ; 27: 515 .

Haidenbauer J and Plessas W. Separable approximations of two-body interactions. Phys. Rev. C.1983; 27: 63.

Talukdar B, Laha U and Sasakawa T. Green’s function for motion in Coulomb‐modified eparable nonlocal potentials. J. Math.Phys. 1986; 27: 2080.

Brown G E and Jackson A D. The nucleon-nucleon interaction. Amsterdam : North-Holland publishing company; 1976.

Yamaguchi Y. Two-Nucleon Problem When the Potential Is Nonlocal but Separable. I. Phys. Rev. 1954; 95:1628 .

Tabakin F. Single Separable Potential with Attraction and Repulsion. Phys .Rev. 1968; 174: 1208.

Mongan T R. Separable-Potential Fits to Nucleon-Nucleon Scattering Data. Phys.Rev. 1968; 175:1260 .

Saito S. Effect of Pauli Principle in Scattering of Two Clusters. Progr. theor. physics. 1968 ; 40: 893.

Coz M , Arnold L G and MacKellar A D. Nonlocal potentials and their local equivalents. Ann. Phys. (N. Y.). 1970; 59: 219.

Arnold L G and Mackellar A D .Study of Equivalent Local Potentials Obtained from Separable Two-Nucleon Interactions. Phys. Rev. C. 1971; 3: 1095.

McTavish J P. Separable potentials and their momentum-energy dependence. J. Phys. G: Nucl. Phys. 1982; 8: 1037.

Talukdar B, Sett G C and Bhattaru S R. On the localisation of separable non-local potentials. J. Phys. G: Nucl. Phys. 1985; 11: 591.

Bhoi J and Laha U. Hamiltonian hierarchy and n–p scattering. J. Phys. G: Nucl. Part. Phys. 2013; 40: 045107.

Laha U and Bhoi J. On the nucleon–nucleon scattering phase shifts through supersymmetry and factorization. Pramana-J. Phys. 2013; 81: 959.

Bhoi J, Laha U and. Panda K C. Nucleon–nucleon scattering in the light of supersymmetric quantum mechanics. Pramana-J. Phys. 2014; 82: 859.

Laha U and Bhoi J. Elastic scattering of light nuclei through a simple potential model. Phys. Atomic Nuclei . 2016; 79: 370-374.

Laha U and Bhoi J. Comparative study of the energy dependent and independent two-nucleon interactions- A supersymmetric approach. Int. J. Mod. Phys. E . 2014; 23: 1450039.

Witten E. Dynamical breaking of supersymmetry. Nucl. Phys. B .1981; 188:513.

Cooper F and Freedman B. Aspects of supersymmetric quantum mechanics. Ann. Phys. NY 1983; 146: 262.

Sukumar C V. Supersymmetry, factorisation of the Schrodinger equation and a Hamiltonian hierarchy . J. Phys. A: Math. Gen. 1985; 18: L57.

Laha U, Battacharyya C, Roy K and Talukdar B. Hamiltonian hierarchy and the Hulthén potential . Phys. Rev. C 1988; 38: 558 .

Calogero F. Variable Phase Approach to Potential Scattering. NewYork: Academic; 1967.

Berstein M and Brown L S. Supersymmetry and the Bistable Fokker-Planck Equation. Phys. Rev. Lett. A 1984; 52: 1933.

Sett G C, Laha U and Talukdar B. Phase-function method for Coulomb-distorted nuclear scattering . J. Phys. A: Math. Gen. 1988 ; 21: 3643.

Zhaba V I. arXiv:1603.05382v1 [nucl-th].

### Refbacks

- There are currently no refbacks.