A New Approach of Synthesis Fe-Substituted Bi-2223 Superconductors
Abstract
Generally, the Bismuth based high temperature superconductors are utilizing in three phases as Bi-2201, Bi-2212 and Bi-2223. These have different transition temperature according to superconducting phase. Here, we studied about Bi-2223 phase by using complex Bi2Sr2Can-1 (Cu1-xFex)3O10+δ where n = 3. In this complex, we has been doped iron in Coper (Cu) site (x = 0.07%). This sample was prepared by solid state reaction method. The planetary Ball mill was used to found the homogeneous powder and grains size particles. The orthorhombic phase and lattice parameter a = 5.19213 A, b = 5.50805 A, c = 34.7816 A were obtained by X-Ray diffraction (XRD) using Rietveld refinement method. The morphological data obtained using field emission scanning electron microscope (FESEM) and found average crystallite size and grain size of the particle at nano scale 34.92 nm. The bond stretching 417.35 cm-1 and 598.85 cm-1 between CuO and FeO are obtaining using Fourier Transform Infrared (FTIR) respectively. The DC electrical resistivity measured at low temperature by liquid nitrogen using Four Prove method and magnetic properties were measured by vibrating sample magnetometer (VSM) at 15kH(Oe) applied magnetic field at room temperature. This study is confirm the initially growth of Fe-substituted Bi-2223 ceramic superconductors.
Keywords
Full Text:
PDFReferences
H.K. Onnes; Comm. Phys. Lab Univ. Leiden 123a (April 1911), Reprinted in Proc. K. Ned. Acad., Wet. (1911) Vol. 14, 204.
Bohm, D., 1949. Note on a theorem of Bloch concerning possible causes of superconductivity. Physical Review, 75 (3), p.502.
Maeda, H., Tanaka, Y., Fukutomi, M. and Asano, T., 1988. A new high-Tc oxide superconductor without a rare earth element. Japanese Journal of Applied Physics, 27 (2A), p.L209.
K. Yamasaki; et al. SEI Technical Review (2004) Vol. No. 58.
T. Masuda; et al. IEEJ National convention, (2003) Vol. 7–094, 7–095.
P.G. de Gennes; Superconductivity of metals and alloys, Westview, Boulder Co. (1999).
J. R. Schrieffer, Theory of Superconductivity, Revised Ed., Perseus Books (1999). pp. 244–248.
Yamasaki, H., Endo, K., Kosaka, S., Umeda, M., Yoshida, S. and Kajimura, K., 1995. Current-voltage characteristics and quasi-two-dimensional vortex-glass transition in epitaxial Bi2Sr2Ca2Cu3Ox films. Cryogenics, 35 (4), pp.263–269.
Q. Li, H.J. Wiesmann; et al. Phys. Rev. (1994) Vol. B 50, 4256.
Han, S.H., Zhao, Y., Yang, C.F., Cheng, C.H., Zhang, H., Gu, G.D., Russell, G.J. and Koshizuka, N., 1998. Vortex-glass-liquid transition in Bi2Sr2CaCu2O8Bi2Sr2Ca2Cu3O10 intergrowth single crystals. Solid state communications, 105 (1), pp.31–36.
Eltsev, Y.F., Lee, S., Nakao, K. and Tajima, S., 2009. Vortex glass scaling in Pb-doped Bi-2223 single crystal. JETP letters, 90 (7), pp.535–538.
ZhiYi, L. and Persson, M., 1988. Crystallisation and superconductivity of rapidly quenched (amorphous) Bi-Ca-Sr-Cu-O samples. Superconductor Science and Technology, 1(4), p.198.
Z. Xi. C. Ji. et al. Solid State Commun. (1989) Vol. 72 (10): 1015–17.
N.D. Zhigadlo, V.V. Petrashko; et al. Phys. (1998) Vol. 299 (3–4): 327–37.
I. H. Gul, A. Maqsood; et al. Phys. C. Supercond. (2006) Vol. 450 (1–2): 83–7.
Li, Y. and Yang, B., 1994. Doping of the Bi-Sr-Ca-Cu-O system withV B elements and the effect on Bi 2 Sr 2 Ca 2 Cu 3 O y phase formation. Journal of materials science letters, 13 (8), pp.594–596.
H. Salamati, P. Kameli; Phys. C. Supercond. (2004) Vol. 403 (1–2):60–6.
F. R. Sale and F. Mahloojchi, Ceramics Int., (1988) Vol. 14, 229.
Baythoun, M.S.G. and Sale, F.R., 1982. Production of strontium-substituted lanthanum manganite perovskite powder by the amorphous citrate process. Journal of Materials Science, 17 (9), pp.2757–2769.
V.R.K. Murthy and J. Sobhanadri, Phys. State. Solidi. (1971) Vol. A. 36, 133.
Waldron, R.D., 1955. Infrared spectra of ferrites. Physical review, 99 (6), p.1727.
Ahn, Y. and Choi, E.J., 2005. Synthesis of nickel zinc iron nanoparticles by coprecipitation technique. Journal of Magnetism and Magnetic Material (Amsterdam), 288, pp.219–223.
Qureshi, A.H., Arshad, M., Masud, K. and Saeed, A., 2005. A comparative study of EDTA-gel derived BSCCO and Pb-BSCCO systems by thermoanalytical and X-ray diffraction techniques. Journal of thermal analysis and calorimetry, 81 (2), pp.363–367.
Qureshi, A.H., Durrani, S.K., Arshad, M., Sale, F.R., Arshad, N. and Rehman, S.U., 2003. Thermal decomposition of precursor and the formation of superconducting phases in the Pb-Bi-Sr-Ca-Cu-O (Pb-BSCCO) system. Journal Of The Chemical Society Of Pakistan, 25 (3), pp.177–182.
Alcock, C.B. and Li, B., 1990. Thermodynamic Study of the Cu‐Sr‐O System. Journal of the American Ceramic Society, 73 (5), pp.1176–1180.
A. D. Cross, Bros. Norschich Ltd. (1960).
The Sadtler Standard Spectra, Sadtler Research Laboratories, Philadelphia, (1974) Vol. PA. p–5.
Rositsa Raykova, Teodara raycheva, et al; TOM (2014) Vol. 53. 10.1.
Dho, J., Lee, E.K., Park, J.Y. and Hur, N.H., 2005. Effects of the grain boundary on the coercivity of barium ferrite BaFe12O19. Journal of Magnetism and Magnetic Materials, 285 (1–2), pp. 164–168.
N. D. Zhigadlo, V.V. Petrashko et al. Physica C (1998) Vol. 299,327–337.
N. Boussouf, M. F. Mosbah, J. Sup. Nov. Magn. 10 jan, (2013).
M. Velter-Stefanescu, O.G. Duliua et al. J. Optoelectronic. Adv. Mater. (2005) Vol. 7 (3), 1557–1561.
D. H. Galvan, A. Durán et al. J. Supercond. Nov. Magn. (2008) Vol. 21, 271–277.
B. Liang, C. Bernhard, et al. Supercond. Sci. Technol. (2004) 17, 731–738 Vol. 17, 731–738.
B. Liang, C. Bernhard, et al. Phys. C (2002) Vol. 383, 75–88.
S.X. Dou, Y.J. Sheng, et al. Mod. Phys. Lett. (1990) Vol. B4, 1393.
T.K. Bansal, S. Bansal & R.G. Mendiratta, Solid State Commun. (1990) Vol. 76, 1027.
DOI: https://doi.org/10.37591/rrjophy.v10i3.3267
Refbacks
- There are currently no refbacks.