Open Access Open Access  Restricted Access Subscription or Fee Access

Cerium Admixture Effect on the Surface Magnetic Properties of Ceramics Based on Yttrium Oxide

O.M. Lavrynenko, Yu.M. Bataiev, M.M. Bataiev, O. Yu. Pavlenko, O.A. Kornienko

Abstract


The influence of 10 mol.% cerium oxide dopant on phase transformations, morphology, and surface magnetic properties (magnetic structure) of polycrystalline ceramics obtained in the CeO2–Y2O3 system, depending on the conditions of its heat treatment, was studied. Using the X-ray phase analysis method, it was established that heat treatment at 120°C does not lead to the interaction of the initial components, and when the oxide mixture is fired at a temperature of 1500°C, the formation of a cubic solid solution of Ce-Y2O3 substitution is observed. Electron paramagnetic resonance spectra of nanopowder with a composition of 90 mol.% Y2O3- 10 mol.% CeO2 and ceramics on their base can demonstrate significant changes in their spectroscopic characteristics and in the form of Y3+ cations in the samples’ structure, which are correlated into a homogenized sample of cubic yttrium oxide at
T = 1500°С. Temperature treatment of the Ce0.1Y0.9O1.95 sample at 1100°С leads to the intensive formation of the (Ce3+1-хY3+х)Ce4+O2 phase, which causes the narrowing of the corresponding spectral lines and characterizes the decrease in the Curie temperature (Tc) for the RZO samples. For a temperature of 1500°С, the narrowing and increasing intensity of the corresponding spectral line corresponds both to the appearance of the main cubic oxide phase as a result of the complete replacement of Ce3+ ions by Y3+ ions for Ce0.1Y0.9O1.95, and to the formation of a complex oxide
(Ce3+1-хY3+х) Ce4+O2.


Keywords


Cerium dioxide, yttrium oxide, mechanosynthesis, nanomaterials, solid solutions, EPR

Full Text:

PDF

References


Rey JFQ, Muccillo ENS. Lattice parameters of yttria-doped ceria solid electrolytes. J Eur Ceram Soc. 2004 Jan 1;24(6):1287–90. doi: 10.1016/S0955–2219(03)00498–9.

Van Herle J, Horita T, Kawada T, Sakai N, Yokokawa H, Dokiya M. Fabrication and sintering of fine yttria‐doped ceria powder. J Am Ceram Soc. 1997 Apr;80(4):933–40.

Chen W, Lee TA, Navrotsky A. Enthalpy of formation of yttria-doped ceria. J Mater Res. 2005 Jan;20(1):144–50. doi: 10.1557/JMR.2005.0017.

Upadhyaya DD, Bhat R, Ramanathan S, Roy SK, Schubert H, Petzow G. Solute effect on grain growth in ceria ceramics. J Eur Ceram Soc. 1994 Jan 1;14(4):337–41. doi: 10.1016/0955–2219(94)90070–1.

Coduri M, Checchia S, Longhi M, Ceresoli D, Scavini M. Rare earth doped ceria: the complex connection between structure and properties. Front Chem. 2018 Oct 31;6:526. doi: 10.3389/fchem.2018.00526, PMID 30430105.

Wang DY, Park DS, Griffith J, Nowick AS. Oxygen-ion conductivity and defect interactions in yttria-doped ceria☆. Solid State Ionics. 1981;2(2):95–105. doi: 10.1016/0167–2738(81)90005–9.

Tsunekawa S, Ishikawa K, Li ZQ, Kawazoe Y, Kasuya A. Origin of anomalous lattice expansion in oxide nanoparticles. Phys Rev Lett. 2000 Oct 16;85(16):3440–3. doi: 10.1103/PhysRevLett.85.3440, PMID 11030916.

Lee W, Chen SY, Chen YS, Dong CL, Lin HJ, Chen CT, et al. Defect structure guided room temperature ferromagnetism of Y-doped CeO2 nanoparticles. J Phys Chem C. 2014 Nov 13;118(45):26359–67. doi: 10.1021/jp507694d.

Hayashi H. Molecular dynamics calculations on ceria-based solid electrolytes with different radius dopants. Solid State Ionics. 2000;131(3–4):281–90. doi: 10.1016/S0167–2738(00)00675–5.

Andrievskaya ER, Kornienko OA, Sayir A, Vasylkiv OO, Sakka Y. Phase Relation Studies in the ZrO2-CeO2-La2O3 System at 1500°C. J Am Ceram Soc. 2011 Jun;94(6):1911–9. doi: 10.1111/j.1551–2916.2010.04316.x.

Аndrievskaya ER, Kornienko OA, Bykov OІ, Sameliuk AV, Bohatyriova ZD. Interaction of ceria and ytterbia in air within temperature range 1500 – 600 °C. J Eur Ceram Soc. 2019 Aug 1;39(9):2930–5. doi: 10.1016/j.jeurceramsoc.2019.03.021.

Andrievskaya ER, Kornienko OA, Samelyuk AV, Gorodov VS, CHerkasova KA, Zgurovec VO. Vzaimodejstvie oksida samariya s oksidom cirkoniya pri temperature 1500°S. Sovrem Probl Fizicheskogo Materialovedeniya. – Kiev, IPM NAN Ukrainy. 2008;17(S):16–24.

Andrievskaya ER, Gusarov VV, Kornienko OA, Samelyuk AV. Vzaimodejstvie oksidov ceriya I erbiya pri temperature 1500°S//Sbornik nauchnyh trudov OAO UkrNII ogneuporov imeni A.S. Berezhnogo Har'kov. 2012;112(S):133–40.

Farle M. Ferromagnetic resonance of ultrathin metallic layers. Rep Prog Phys. 1998 Jul 1;61(7):755–826. doi: 10.1088/0034–4885/61/7/001.

Kakazej NG, Sorin LA. Priroda izmeneniya spektra EPR Mn:MgO obuslovlennogo defektnost'yu kristallicheskoj struktury. Ukr Fіz Z. 1971;15(11), s:1903–4.

Samsonov GV, Kakazey NG, Sorin LA. The Radiospectroscopic study of defects in crystalline structure, Phys. Sintering. 1973;5(3):97–114.

Bataiev MM, Bataiev YM, Lavrynenko OM, Kornienko OA. Surface magnetic properties and magnetization dynamics of magnetite nanoparticles doped with platinum ions. Наносистеми Наноматеріали Нанотехнології. 2020;18(2):311–20.

Samsonov GV, Vlasova MV, Kakazey NG, Grigorjev BA, uskoković DP, ristić MM. Study of elementary mechanisms during sintering of MgO with Mn2O3, MnO2 and NiO additives. J Phys Colloques. 1976 Dec 1;37(C7):C7–415. doi: 10.1051/jphyscol:1976795.

Lavrinenko OM, Bikov OІ, Bataev YUM, Bataev MM, Kornienko OA, Vіsnik ONU et al. Tom. 2020;25, vip:3(75).


Refbacks

  • There are currently no refbacks.