Open Access Open Access  Restricted Access Subscription or Fee Access

Optimization of Culture Conditions for the Mass Cultivation of Amphora coffeaeformis: A Promising Marine Diatom for Biodiesel Production

Rajesh Gandhi Gunti, Prasada Babu Gundala, Paramageetham Chinthala

Abstract


Microalgae are promising primary producers involved in sustainable energy. As the oceanic environments are dwindling environments the primary productivity is influenced by light and temperature thereby altering the biochemical composition of the algae Amphora coffeaeformis, being a marine organism can be grown in varied environments, however for higher yield of biomass and lipid production simple modifications in the culture conditions is required. This study helps to exploit this species for mass cultivation to produce biodiesel.

 

Keywords: Amphora coffeaeformis, biodiesel, diatoms, photoperiod

Cite this Article

Rajesh Gandhi Gunti, Prasada Babu Gundala, Paramageetham Chinthala. Optimization of culture conditions for the mass cultivation of Amphora coffeaeformis: A promising marine diatom for biodiesel production. Research & Reviews: Journal of Botany. 2018; 7(2): 11–16p


Keywords


Amphora coffeaeformis, bio diesel, Diatoms, and photoperiod.

Full Text:

PDF

References


Mann DG. Droop SJM. Biodiversity, biogeography and conservation of diatoms: biogeography of freshwater algae. kluwer academic publishers. dordrecht (the netherlands). 1996; Developments in Hydrobiology , no. (118) 19-32p.

Guiry M.D. How Many Species of Algae Are There: Journal of Phycology. 2012; 48: 1057-63p.

Appeltans W. Boucket P. Boxshall GA. et al., World Register of Marine species. 2012.

Falkowski P.G, Barber R.T, Smetacek V. Biogeochemical controls and feedbacks on ocean primary production. Science. 1998; 281: 200–6p.

Granum E. Rauven J. A. Leegood R.C. How do marine diatoms fix 10 billion tons of inorganic carbon per year. Can J Bot. 2005; 83: 898-908p.

Bowler C. Allen AE. Badger JH . The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature. 2008; 456: 239–244p.

Chen Y-C. Immobilization of twelve benthic diatom species for long-term storage and as feed for post-larval abalone Haliotis diversicolor. Aquaculture. 2007; 263(1–4):97–106p.

Crookes RJ. Comparative Bio-Fuel Performance in Internal Combustion Engines. Biomass and Bioenergy. 2006; 30(5): 461-8p.

Doi.10.1016/j.biombioe.2005.11.022.

Lang X. Dalai AK. Bakhshi NN. Reany MJ. Hertz PB. et al., Preparation and characterization of biodiesel from various bio oils. Bioresour Technol. 2001; 80: 53-62p.

Minowa T. Yokoyama SY. Kishimo M. Okakurat T. et al., Oil production from algal cells of Dunaliella tertiolecta by direct thermo chemical liquefaction. Fuel. 1995; 74: 1735-8. Doi.10.1016/0016-2361(95)80001-X.

Sheehan J. Dunahay T. Benemann J. Roessler p. 1998; A look back at the US department of energy’s aquatic species program: biodiesel from algae, Colorado. National Renewable Energy Laboratory. Report NREL-580-24190.

Bérard-Therriault L. Cardinal A. Poulin M. 1986; Lesdiatomées (Bacillariophyceae) benthiques de substrats dursdes eaux marines et saumâtres du Québec. 6. Navicu-lales: Cymbellaceae et Gomphonemaceae. Naturaliste Can. 113: 405–29p.

Hohn M.H. Hellerman J. New diatoms from the Lewes-Rehoboth canal: Delaware and Chesapeake Bay area of Baltimore, Maryland. 1966; Trans Am Microsc Soc. 85: 115–30p.

Patrick R. Freese L.R. Diatoms (Bacillariophyceae) from northern Alaska. Proc. Acad. Nat. Sci. 112: 129–293p.

Stepnek J.G. Kociolek J.P. Several new species of Amphora and Halamphora from the western USA. Diatom Res. 28:61-76p.

Stoermer E.F. Yang J.J. Contributions to the diatom flora of the Laurentian Great Lakes. I. New and little-known species of Amphora (Bacillariophyta Pennati bacillariophyceae). Phycologia, 10: 397-409p

.

Wachnicka, A.H. Gaiser E.E. Characterization of Amphora and Seminavis from south Florida. 2007.; U.S.A: Diatom Res. 22: 387–455p.

Guillard R.R. Ryther J.H. Studies of Marine Planktonic Diatoms. 1962; 1 Cyclotella Nana Hustedt, and Detonula.

Venkataraman, G.S. 1939; A systematic account of some South Indian Diatoms. Proceedings of the National Academy of Science, India, Sect. B10(6): 293-368p.

Subrahmanyan R. A systematic account of the marine plankton diatoms of the Madras Coast. 1946; Proc. Indian Acad . Sci. 24: 85-197p.

Prescott G.W. How to know freshwater algae (Ed. H.E. Jaques). 1954; W.H .C. Brown company publishers. Lowa. 272p.

Richmond A. Grobbelaar J.U. Factors affecting the output rate of Spirulina platensis with reference to mass cultivation. 1954; Biomass. 10(4): 253-64p.

Tesser MB Camerio DJ. Portella MC. Co-feeding of pacu (Piaractos mesopotamicus, Holmers, 1887). 2005; Larvae with Artemia nauplii and microencapsulated diet. Journal of Applied Aquaculture. 17: 47-59p.

Talling JF. An experimental study of the growth and photosynthesis of some freshwater plankton diatoms. 1953;. Ph.D. thesis, University of Leeds.

Yang X. Liu P. Hao Z. Shi J. Zhang. 2012; Microalgal stains for biofuel.

Bioresources,7(1): 686-695. Khotimchenko, S.V. Yakovleva, IM. Lipid composition of red alga Tichocarpus crinitus.2005; Exposed to different levels of photon irradiance. Phytochemistry, 66(1): 73-9p.

Chen GQ. Jiang Y. Chen F. Variation of lipid class composition in Nitzschia laevis as a response to growth temperature change. Food Chem. 2008; 109:88-94p.




DOI: https://doi.org/10.37591/rrjob.v7i2.1009

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 Research & Reviews: Journal of Botany