Open Access Open Access  Restricted Access Subscription or Fee Access

Virulence Factors, Pathogenesis and Drug Susceptibility of Emerging Buzzing threat 2019-nCoV

Trupti Polekar

Abstract


Abstract

This review article highlights the role of OMPs as virulence factor and suggests the combination of drugs against 2019-nCoV. 2019nCoV, outbreak has been occurred form Wuhan (China) and it spreads rapidly throughout the world. Outer Membrane Protein (OMPs) play vital role in pathogenesis of 2019-nCoV. Altered OMPs may responsible to increase affinity towards target site. Recombinant virus with absence of OMPs (especially E, envelope protein) may play important role in vaccine production. As 2019-nCoV is the novel virus so collaboration of various fields are required to increase effectivity of antiviral strategies against 2019-nCoV

 

Keywords: OMPs: Outer Membrane Proteins, Virulence factor, 2019-nCoV: Novel Coronavirus 2019

Cite this Article

Trupti Polekar. Virulence Factors, Pathogenesis and Drug Susceptibility of Emerging Buzzing threat 2019-nCoV. Research & Reviews: A Journal of Life Sciences. 2020; 10(2): 19–28p.


Full Text:

PDF

References


Arden, K.E., Nissen, M.D., Sloots, T.P. and Mackay, I.M., 2005. New human coronavirus, HCoV‐NL63, associated with severe lower respiratory tract disease in Australia. Journal of medical virology, 75(3), pp.455-462.

Bosch, B.J., Van der Zee, R., De Haan, C.A. and Rottier, P.J., 2003. The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. Journal of virology, 77(16), pp.8801-8811.

Liu, C., Zhou, Q., Li, Y., Garner, L.V., Watkins, S.P., Carter, L.J., Smoot, J., Gregg, A.C., Daniels, A.D., Jervey, S. and Albaiu, D., 2020. Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases. ACS Cent. Sci. 2020, 6, 315−331.

Gorbalenya, A.E., Baker, S.C., Baric, R., Groot, R.J.D., Drosten, C., Gulyaeva, A.A., Haagmans, B.L., Lauber, C., Leontovich, A.M., Neuman, B.W. and Penzar, D., 2020. Severe acute respiratory syndrome-related coronavirus: The species and its viruses–a statement of the Coronavirus Study Group. Nature Microbiology, 5(4), p.536.

Wu, F., Zhao, S., Yu, B., Chen, Y.M., Wang, W., Song, Z.G., Hu, Y., Tao, Z.W., Tian, J.H., Pei, Y.Y. and Yuan, M.L., 2020. A new coronavirus associated with human respiratory disease in China. Nature, 579(7798), pp.265-269.

Zhou, P., YANG, X., wANG, X.G. and HU, B., 2020. ZHANG w. Si Hr, zHu y, li B, HuanG cl, cHen HD, cHen J, luo y, Guo H, JianG rD, liu MQ, cHen y, SHen Xr, WanG X, zHenG XS, zHao K, cHen QJ, DenG F, liu ll, yan B, zHan FX, WanG yy, Xiao GF, SHi zl. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579, pp.270-273.

World Health Organization. Clinical management of severe acute respiratory infection when novel coronavirus (nCoV) infection is suspected https://www.who.

int/publications-detail/clinical-management-of-severe-acute-respiratory-infection-when-novel-coronavirus-(ncov)-infection-is-suspected.

Corse, E. and Machamer, C.E., 2000. Infectious bronchitis virus E protein is targeted to the Golgi complex and directs release of virus-like particles. Journal of virology, 74(9), pp.4319-4326.

Zhang, T., Wu, Q. and Zhang, Z., 2020. Probable pangolin origin of SARS-CoV-2 associated with the COVID-19 outbreak. Current Biology, 30, pp.1-6.

Monchatre-Leroy, E., Boué, F., Boucher, J.M., Renault, C., Moutou, F., Ar Gouilh, M. and Umhang, G., 2017. Identification of alpha and beta coronavirus in wildlife species in France: bats, rodents, rabbits, and hedgehogs. Viruses, 9(12), p.364.

Cui, J., Li, F. and Shi, Z.L., 2019. Origin and evolution of pathogenic coronaviruses. Nature Reviews Microbiology, 17(3), pp.181-192.

Cao, B., Wang, Y., Wen, D., Liu, W., Wang, J., Fan, G., Ruan, L., Song, B., Cai, Y., Wei, M. and Li, X., 2020. A trial of lopinavir–ritonavir in adults hospitalized with severe Covid-19. New England Journal of Medicine, 382, pp.1787-1799.

Hung, I.F.N., Lung, K.C., Tso, E.Y.K., Liu, R., Chung, T.W.H., Chu, M.Y., Ng, Y.Y., Lo, J., Chan, J., Tam, A.R. and Shum, H.P., 2020. Triple combination of interferon beta-1b, lopinavir–ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. The Lancet, 395(10238), pp.1695-1704.

Khalili, J.S., Zhu, H., Mak, N.S.A., Yan, Y. and Zhu, Y., 2020. Novel coronavirus treatment with ribavirin: Groundwork for an evaluation concerning COVID‐19. Journal of medical virology, 92(7), pp.740-746.

Grein, J., Ohmagari, N., Shin, D., Diaz, G., Asperges, E., Castagna, A., Feldt, T., Green, G., Green, M.L., Lescure, F.X. and Nicastri, E., 2020. Compassionate use of remdesivir for patients with severe Covid-19. New England Journal of Medicine, 382(24), pp.2327-2336.

Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X. and Cheng, Z., 2020. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The lancet, 395(10223), pp.497-506.

Shereen, M.A., Khan, S., Kazmi, A., Bashir, N. and Siddique, R., 2020. COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. Journal of Advanced Research.

Wang, X., Cao, R., Zhang, H., Liu, J., Xu, M., Hu, H., Li, Y., Zhao, L., Li, W., Sun, X. and Yang, X., 2020. The anti-influenza virus drug, arbidol is an efficient inhibitor of SARS-CoV-2 in vitro. Cell Discovery, 6(1), pp.1-5.

Li, X., Geng, M., Peng, Y., Meng, L. and Lu, S., 2020. Molecular immune pathogenesis and diagnosis of COVID-19. Journal of Pharmaceutical Analysis.

Lauer, S.A., Grantz, K.H., Bi, Q., Jones, F.K., Zheng, Q., Meredith, H.R., Azman, A.S., Reich, N.G. and Lessler, J., 2020. The Incubation Period of Coronavirus Disease.

Groneberg, D.A., Hilgenfeld, R. and Zabel, P., 2005. Molecular mechanisms of severe acute respiratory syndrome (SARS). Respiratory Research, 6(1), p.8.

Chang, Y.J., Liu, C.Y.Y., Chiang, B.L., Chao, Y.C. and Chen, C.C., 2004. Induction of IL-8 release in lung cells via activator protein-1 by recombinant baculovirus displaying severe acute respiratory syndrome-coronavirus spike proteins: identification of two functional regions. The Journal of Immunology, 173(12), pp.7602-7614.

Walls, A.C., Park, Y.J., Tortorici, M.A., Wall, A., McGuire, A.T. and Veesler, D., 2020. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell.

Kirchdoerfer, R.N. and Ward, A.B., 2019. Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors. Nature communications, 10(1), pp.1-9.

Lian, N., Xie, H., Lin, S., Huang, J., Zhao, J. and Lin, Q., 2020. Umifenovir treatment is not associated with improved outcomes in patients with coronavirus disease 2019: a retrospective study. Clinical Microbiology and Infection.

Amsden, G.W., 2005. Anti-inflammatory effects of macrolides—an underappreciated benefit in the treatment of community-acquired respiratory tract infections and chronic inflammatory pulmonary conditions?. Journal of Antimicrobial Chemotherapy, 55(1), pp.10-21.

Weiss, S.R. and Navas-Martin, S., 2005. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiology and molecular biology reviews, 69(4), pp.635-664.

Kim, J.M., Chung, Y.S., Jo, H.J., Lee, N.J., Kim, M.S., Woo, S.H., Park, S., Kim, J.W., Kim, H.M. and Han, M.G., 2020. Identification of Coronavirus Isolated from a Patient in Korea with COVID-19. Osong public health and research perspectives, 11(1), p.3.

Cristina, S., Concetta, R., Francesco, R. and Annalisa, C., 2020. SARS-Cov-2 infection: Response of human immune system and possible implications for the rapid test and treatment. International Immunopharmacology, p.106519.

Salehi, S., Abedi, A., Balakrishnan, S. and Gholamrezanezhad, A., 2020. Coronavirus disease 2019 (COVID-19): a systematic review of imaging findings in 919 patients. American Journal of Roentgenology, pp.1-7.

FDA Website: https://www.fda.gov/

emergency-preparedness-and-response/mcm-issues/coronavirus-disease-2019-covid-19.

Agostini, M.L., Andres, E.L., Sims, A.C., Graham, R.L., Sheahan, T.P., Lu, X., Smith, E.C., Case, J.B., Feng, J.Y., Jordan, R. and Ray, A.S., 2018. Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease. MBio, 9(2), pp.1-15.

Singh, A.K., Singh, A., Shaikh, A., Singh, R. and Misra, A., 2020. Chloroquine and hydroxychloroquine in the treatment of COVID-19 with or without diabetes: A systematic search and a narrative review with a special reference to India and other developing countries. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 14(3), pp.241-246.

Colson, P., Rolain, J.M., Lagier, J.C., Brouqui, P. and Raoult, D., 2020. Chloroquine and hydroxychloroquine as available weapons to fight COVID-19. Int J Antimicrob Agents, 105932(10.1016).

Meo, S.A., Klonoff, D.C. and Akram, J., 2020. Efficacy of chloroquine and hydroxychloroquine in the treatment of COVID-19. Eur Rev Med Pharmacol Sci, 24(8), pp.4539-4547.

Yao, X., Ye, F., Zhang, M., Cui, C., Huang, B., Niu, P., Liu, X., Zhao, L., Dong, E., Song, C. and Zhan, S., 2020. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clinical Infectious Diseases.

Cai, Q., Yang, M., Liu, D., Chen, J., Shu, D., Xia, J., Liao, X., Gu, Y., Cai, Q., Yang, Y. and Shen, C., 2020. Experimental treatment with favipiravir for COVID-19: an open-label control study. Engineering.

Cao, B., Wang, Y., Wen, D., Liu, W., Wang, J., Fan, G., Ruan, L., Song, B., Cai, Y., Wei, M. and Li, X., 2020. A trial of lopinavir–ritonavir in adults hospitalized with severe Covid-19. New England Journal of Medicine.

Chu, C.M., Cheng, V.C.C., Hung, I.F.N., Wong, M.M.L., Chan, K.H., Chan, K.S., Kao, R.Y.T., Poon, L.L.M., Wong, C.L.P., Guan, Y. and Peiris, J.S.M., 2004. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax, 59(3), pp.252-256.

Binford, S.L., Maldonado, F., Brothers, M.A., Weady, P.T., Zalman, L.S., Meador, J.W., Matthews, D.A. and Patick, A.K., 2005. Conservation of amino acids in human rhinovirus 3C protease correlates with broad-spectrum antiviral activity of rupintrivir, a novel human rhinovirus 3C protease inhibitor. Antimicrobial agents and chemotherapy, 49(2), pp.619-626.

Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., Schiergens, T.S., Herrler, G., Wu, N.H., Nitsche, A. and Müller, M.A., 2020. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 181, pp.1–10.

Narayanan, N. and Nair, D.T., 2020. Vitamin B12 may inhibit RNA-dependent-RNA polymerase activity of nsp12 from the SARS-CoV-2 Virus.

Koutmos, M., Gherasim, C., Smith, J.L. and Banerjee, R., 2011. Structural basis of multifunctionality in a vitamin B12-processing enzyme. Journal of Biological Chemistry, 286(34), pp.29780-29787.

Yamazaki, Y., Hayamizu, F. and Tanaka, C., 2000. Effects of long-term methylcobalamin treatment on the progression of visual field defects in normal-tension glaucoma. Current therapeutic research, 61(7), pp.443-451.

Amirzargar, M.A., Yaghubi, F., Hosseinipanah, M., Jafari, M., Pourjafar, M., Rezaeepoor, M., Rezaei, H., Roshanaei, G., Hajilooi, M. and Solgi, G., 2017. Anti-inflammatory effects of valproic acid in a rat model of renal ischemia/reperfusion injury: alteration in cytokine profile. Inflammation, 40(4), pp.1310-1318.

Liao, W.I., Chien, W.C., Chung, C.H., Wang, J.C., Chung, T.T., Chu, S.J. and Tsai, S.H., 2018. Valproic acid attenuates the risk of acute respiratory failure in patients with subarachnoid hemorrhage. QJM: An International Journal of Medicine, 111(2), pp.89-96.

Strohl, W.R., 2015. Fusion proteins for half-life extension of biologics as a strategy to make biobetters. BioDrugs, 29(4), pp.215-239.

Chan, W.C., 2020. Nano Research for COVID-19. ACS nano.

Wada, T., Shimode, K., Hoshiyama, T., Takayama, Y. and Yamaoka, K., 2020. Three Novel COVID-19 Pneumonia Cases Successfully Treated With Lopinavir/Ritonavir. Frontiers in Medicine, 7, p.241.

Channappanavar, R., Zhao, J. and Perlman, S., 2014. T cell-mediated immune response to respiratory coronaviruses. Immunologic research, 59(1-3), pp.118-128.

Yan, R., Zhang, Y., Guo, Y., Xia, L. and Zhou, Q., 2020. Structural basis for the recognition of the 2019-nCoV by human ACE2. BioRxiv, 367(6485), pp.1444-1448.


Refbacks

  • There are currently no refbacks.