

Study of Osmotic Dehydration as a Pretreatment for the Conservation of araçá-boi (Eugenia stipitata Mc Vaugh-Myrtaceae), a Regional Amazonian Fruit
Abstract
This work aimed to study the use of osmotic dehydration and drying as a conservation technique for araçá-boi, a regional fruit from the Amazon. In dehydration, solutions of sucrose and glucose syrup were used. The experimental design was based on the factorial planning 22, varying the time (6, 12, and 18 h) and concentration of the solution (50, 60, and 70%). The samples obtained in the best dehydration conditions were subjected to physicochemical analyses of ashes, pH, acidity, and vitamin C. The drying kinetics in the air circulation oven at 60°C was performed to check the interference of the osmotic treatment, in time and loss of moisture. The experimental planning indicated that the highest levels of concentration and time (70% and 18 h), provided a reduction in the moisture of less than 60% of the samples of araçá-boi. Physicochemical analyses indicated that osmotic dehydration caused an increase in pH, reduced acidity, and vitamin C content for both samples dehydrated with sucrose and glucose. The equilibrium moisture in the drying kinetics was obtained around 500 min for the dehydrated samples and 400 min for the fresh sample. The Page and Midilli and Kucuk models describe the drying kinetics behavior of osmotically dehydrated and fresh samples of araçá-boi, respectively.
Keywords
References
Neri-Numa IA, Carvalho-Silva LB, Morales JP, et al. Evaluation of the antioxidant, antiproliferative and antimutagenic potential of araçá-boi fruit (Eugenia stipitata Mc Vaugh-Myrtaceae) of the Brazilian Amazon Forest. Food Res Int. 2013; 50(1): 70–76. doi:10.1016/j.foodres.2012.09.032
Neves LC, Tosin JM, Benedette RM, et al. Post-harvest nutraceutical behaviour during ripening and senescence of 8 highly perishable fruit species from the Northern Brazilian Amazon region. Food Chem. 2015; 174: 188–196. doi:10.1016/j.foodchem.2014.10.111
Barros RGC, Andrade JKS, Denadai M, et al. Evaluation of bioactive compounds potential and antioxidant activity in some Brazilian exotic fruit residues. Food Res Int. 2017; 102: 84–92. doi:10.1016/j.foodres.2017.09.082
Donado-Pestana CM, Moura MHC, de Araujo RL, et al. Polyphenols from Brazilian native Myrtaceae fruits and their potential health benefits against obesity and its associated complications. Curr Opin Food Sci. 2018; 19: 42–49. doi:10.1016/j.cofs.2018.01.001
de Araújo FF, Neri-Numa IA, de Paulo Farias D, et al. Wild Brazilian species of Eugenia genera (Myrtaceae) as an innovation hotspot for food and pharmacological purposes. Food Res Int. 2019; 121: 57–72. doi:10.1016/j.foodres.2019.03.018
Brasil. Ministério do Meio Ambiente. Espécies nativas da flora brasileira de valor econômico atual ou potencial: Plantas para o Futuro: Região Centro-Oeste [in portuguese]. Vieira RF, Camillo J, Coradin L (Editors). – Brasília: MMA, 2016.
de Araújo FF, de Paulo Farias D, Neri-Numa IA, et al. Gastrointestinal bioaccessibility and bioactivity of phenolic compounds from araçá-boi fruit. LWT. 2020; 135: 110230. doi:10.1016/j.lwt.2020.110230
Seraglio SKT, Schulz M, Nehring P, et al. Nutritional and bioactive potential of Myrtaceae fruits during ripening. Food chem. 2018; 239: 649–656. doi:10.1016/j.foodchem.2017.06.118
Yadav AK, Singh SV. Osmotic dehydration of fruits and vegetables: a review. J Food Sei Technol. 2014; 51(9): 1654–1673. doi:10.1007/s13197-012-0659-2
Ahmed I, Qazi IM, Jamal S. Developments in osmotic dehydration technique for the preservation of fruits and vegetables. Innovative Food Sci Emerging Technol. 2016; 34: 29–43. doi:10.1016/j.ifset.2016.01.003
Alfaro L, Siramard S, Chouljenko A, et al. Effects of liquid nitrogen pretreatment on the osmotic dehydration and quality of cryogenically frozen blueberries (Vaccinium angustifolium Ait.). Food Biosci. 2018; 22: 165–169. doi:10.1016/j.fbio.2018.02.006
Li L, Yu Y, Xu Y, et al. Effect of ultrasound-assisted osmotic dehydration pretreatment on the drying characteristics and quality properties of Sanhua plum (Prunus salicina L.). LWT. 2021; 138: 110653. doi:10.1016/j.lwt.2020.110653
Souza Neto MA, Maia GA, Lima JR, et al. Osmotic dehydration of mango followed by conventional drying: evaluation of process variables. Ciênc Agrotec. 2005; 29: 1021–1028. doi: 10.1590/S1413-70542005000500016.
Rigueto CVT, Evaristo LM, Geraldi CAQ, et al. Influence of drying temperature on uvaia (Eugenia pyriformis) foam layer. Engevista, 2018; 20: 537–547. doi:10.22409/engevista.v20i4.9540
Adolfo Lutz Institute (IAL). Métodos Físico-Químicos para Análise de Alimentos [in portuguese]. São Paulo: Instituto Adolfo Lutz, 2008.
Cavalcanti MERM, Braga MED, Kross RK. Osmotic drying of tomato: epidermis effect. Revista Brasileira de Produtos Agroindustriais. 2003; 5: 77–84. Available from: http://www.deag.ufcg.edu.br/rbpa/rev5e/Art5e9.pdf.
Martim NSPP, Waszczynskyj N, Masson ML. Calculation of the variables in dehydration osmotic of the mangoes cv. Tommy Atkins. Ciênc. Agrotec. 2007; 31: 1755–1759. doi: 10.1590/S1413-70542007000600023.
Tonon RV, Baroni AF, Hubinger MD. Study of osmotic dehydration of tomato in ternary solutions through response surface methodology. Ciênc. Tecnol. Aliment. 2006; 26: 715–723. doi:10.1590/S0101-20612006000300036.
Vieira GS, Pereira LM, Hubinger MD. Optimisation of osmotic dehydration process of guavas by response surface methodology and desirability function. Int J Food Sci Technol. 2012; 47(1): 132–140. doi:10.1111/j.1365-2621.2011.02818.x
Luchese CL, Gurak PD, Marczak LDF, et al. Osmotic dehydration of physalis (Physalis peruviana L.): Evaluation of water loss and sucrose incorporation and the quantification of carotenoids. LWT. 2015; 63(2): 1128–1136. doi:10.1016/j.lwt.2015.04.060
Ganachari A, Thangavel K, Nidoni U, et al. Optimisation of osmotic dehydration process for aonla (Emblica officinalis) fruit in the mixture of salt-sugar solution. J Pharmacogn Phytochem. 2020; 9(4): 772–775. doi: 10.22271 / phyto.2020.v9.i4k.11794
Canuto GAB, Xavier AAO, Neves LC, et al. Physical and chemical characterization of fruit pulps from Amazonia and their correlation to free radical scavenger activity. Rev Bras Frutic. 2010; 32(4): 1196–1205. doi:10.1590 / S0100-29452010005000122
Teixeira TR, Oliveira AN, Ramos AM. Efeitos da temperatura e concentração nas propriedades físicas da polpa de araçá-boi [in portuguese]. Boletim do Centro de Pesquisa de Processamento de Alimentos. 2013; 31(2): 1–10. doi:10.5380/cep.v31i2.34957
de Souza RS, Sousa S, Loss RA, et al. Avaliação físico-química do fruto araçá-boi (Eugenia stipitata MacVaugh) cultivado na mesorregião do sudoeste Mato-grossense [in portuguese]. Revista Destaques Acadêmicos, 2018; 10(3): 1–13. doi: 10.22410/issn.2176-3070.v10i3a2018.1948
Maldonado RR, Pedreira AJRM, Cristianini LB, et al. Application of soluble fibres in the osmotic dehydration of pineapples and reuse of effluent in a beverage fermented by water kefir. LWT. 2020; 132: 109819. doi:10.1016/j.lwt.2020.109819
Sulistyawati I, Verkerk R, Fogliano V, et al. Modelling the kinetics of osmotic dehydration of mango: Optimizing process conditions and pre-treatment for health aspects. J Food Eng. 2020; 280: 109985. doi:10.1016/j.jfoodeng.2020.109985
Soares EC. Caracterização de aditivos para secagem de araça-boi (Eugenia stipitata Mc Vaugh) em leito de espuma [in portuguese]. Dissertation. Universidade Federal do Sudoeste da Bahia, 2013.
Azoubel PM, Murr FEX. Optimisation of osmotic dehydration of cashew Apple (Anacardiumoccidentale L.) in sugar solutions. Food Sci Technol Int. 2003; 9(6): 427–433. doi: 10.1177/1082013203040908
Madureira IA, Figueirêdo RMF, Queiroz AJM, et al. Drying kinetics of cactus pear pulp. Revista Brasileira de Produtos Agroindustriais. 2011; 13: 345–354. Available from: http://www.deag.ufcg.edu.br/rbpa/rev13e/Art13E3.pdf
Marques LF, Duarte MEM, Cavalcanti Mata MERM, et al. Drying preceded of osmotic dehydration of cashew’s pseudofruit: comparison being the mathematical models applied. Revista Brasileira de Produtos Agroindustriais. 2007; 9(2): 161–170. Available from: http://deag.ufcg.edu.br/rbpa/rev92/Art928.pdf
DOI: https://doi.org/10.37591/rrjofst.v10i2.3046
Refbacks
- There are currently no refbacks.