Open Access Open Access  Restricted Access Subscription or Fee Access

Study of Osmotic Dehydration as a Pretreatment for the Conservation of araçá-boi (Eugenia stipitata Mc Vaugh-Myrtaceae), a Regional Amazonian Fruit

Caroline Venturoli Rodrigues, Cesar Vinicius Toniciolli Rigueto, Marieli Rosseto, Ionara Regina Pizzutti, Claudineia Aparecida Queli Geraldi, Juliana Maria de Paula, Raquel Aparecida Loss, Sumaya Ferreira Guedes, Sumaria Sousa e Silva, José Wilson Pires Carvalho

Abstract


This work aimed to study the use of osmotic dehydration and drying as a conservation technique for araçá-boi, a regional fruit from the Amazon. In dehydration, solutions of sucrose and glucose syrup were used. The experimental design was based on the factorial planning 22, varying the time (6, 12, and 18 h) and concentration of the solution (50, 60, and 70%). The samples obtained in the best dehydration conditions were subjected to physicochemical analyses of ashes, pH, acidity, and vitamin C. The drying kinetics in the air circulation oven at 60°C was performed to check the interference of the osmotic treatment, in time and loss of moisture. The experimental planning indicated that the highest levels of concentration and time (70% and 18 h), provided a reduction in the moisture of less than 60% of the samples of araçá-boi. Physicochemical analyses indicated that osmotic dehydration caused an increase in pH, reduced acidity, and vitamin C content for both samples dehydrated with sucrose and glucose. The equilibrium moisture in the drying kinetics was obtained around 500 min for the dehydrated samples and 400 min for the fresh sample. The Page and Midilli and Kucuk models describe the drying kinetics behavior of osmotically dehydrated and fresh samples of araçá-boi, respectively.


Keywords


Amazon, araçá-boi, biodiversity, conservation, osmotic dehydration

Full Text:

PDF

References


Neri-Numa IA, Carvalho-Silva LB, Morales JP, et al. Evaluation of the antioxidant, antiproliferative and antimutagenic potential of araçá-boi fruit (Eugenia stipitata Mc Vaugh-Myrtaceae) of the Brazilian Amazon Forest. Food Res Int. 2013; 50(1): 70–76. doi:10.1016/j.foodres.2012.09.032

Neves LC, Tosin JM, Benedette RM, et al. Post-harvest nutraceutical behaviour during ripening and senescence of 8 highly perishable fruit species from the Northern Brazilian Amazon region. Food Chem. 2015; 174: 188–196. doi:10.1016/j.foodchem.2014.10.111

Barros RGC, Andrade JKS, Denadai M, et al. Evaluation of bioactive compounds potential and antioxidant activity in some Brazilian exotic fruit residues. Food Res Int. 2017; 102: 84–92. doi:10.1016/j.foodres.2017.09.082

Donado-Pestana CM, Moura MHC, de Araujo RL, et al. Polyphenols from Brazilian native Myrtaceae fruits and their potential health benefits against obesity and its associated complications. Curr Opin Food Sci. 2018; 19: 42–49. doi:10.1016/j.cofs.2018.01.001

de Araújo FF, Neri-Numa IA, de Paulo Farias D, et al. Wild Brazilian species of Eugenia genera (Myrtaceae) as an innovation hotspot for food and pharmacological purposes. Food Res Int. 2019; 121: 57–72. doi:10.1016/j.foodres.2019.03.018

Brasil. Ministério do Meio Ambiente. Espécies nativas da flora brasileira de valor econômico atual ou potencial: Plantas para o Futuro: Região Centro-Oeste [in portuguese]. Vieira RF, Camillo J, Coradin L (Editors). – Brasília: MMA, 2016.

de Araújo FF, de Paulo Farias D, Neri-Numa IA, et al. Gastrointestinal bioaccessibility and bioactivity of phenolic compounds from araçá-boi fruit. LWT. 2020; 135: 110230. doi:10.1016/j.lwt.2020.110230

Seraglio SKT, Schulz M, Nehring P, et al. Nutritional and bioactive potential of Myrtaceae fruits during ripening. Food chem. 2018; 239: 649–656. doi:10.1016/j.foodchem.2017.06.118

Yadav AK, Singh SV. Osmotic dehydration of fruits and vegetables: a review. J Food Sei Technol. 2014; 51(9): 1654–1673. doi:10.1007/s13197-012-0659-2

Ahmed I, Qazi IM, Jamal S. Developments in osmotic dehydration technique for the preservation of fruits and vegetables. Innovative Food Sci Emerging Technol. 2016; 34: 29–43. doi:10.1016/j.ifset.2016.01.003

Alfaro L, Siramard S, Chouljenko A, et al. Effects of liquid nitrogen pretreatment on the osmotic dehydration and quality of cryogenically frozen blueberries (Vaccinium angustifolium Ait.). Food Biosci. 2018; 22: 165–169. doi:10.1016/j.fbio.2018.02.006

Li L, Yu Y, Xu Y, et al. Effect of ultrasound-assisted osmotic dehydration pretreatment on the drying characteristics and quality properties of Sanhua plum (Prunus salicina L.). LWT. 2021; 138: 110653. doi:10.1016/j.lwt.2020.110653

Souza Neto MA, Maia GA, Lima JR, et al. Osmotic dehydration of mango followed by conventional drying: evaluation of process variables. Ciênc Agrotec. 2005; 29: 1021–1028. doi: 10.1590/S1413-70542005000500016.

Rigueto CVT, Evaristo LM, Geraldi CAQ, et al. Influence of drying temperature on uvaia (Eugenia pyriformis) foam layer. Engevista, 2018; 20: 537–547. doi:10.22409/engevista.v20i4.9540

Adolfo Lutz Institute (IAL). Métodos Físico-Químicos para Análise de Alimentos [in portuguese]. São Paulo: Instituto Adolfo Lutz, 2008.

Cavalcanti MERM, Braga MED, Kross RK. Osmotic drying of tomato: epidermis effect. Revista Brasileira de Produtos Agroindustriais. 2003; 5: 77–84. Available from: http://www.deag.ufcg.edu.br/rbpa/rev5e/Art5e9.pdf.

Martim NSPP, Waszczynskyj N, Masson ML. Calculation of the variables in dehydration osmotic of the mangoes cv. Tommy Atkins. Ciênc. Agrotec. 2007; 31: 1755–1759. doi: 10.1590/S1413-70542007000600023.

Tonon RV, Baroni AF, Hubinger MD. Study of osmotic dehydration of tomato in ternary solutions through response surface methodology. Ciênc. Tecnol. Aliment. 2006; 26: 715–723. doi:10.1590/S0101-20612006000300036.

Vieira GS, Pereira LM, Hubinger MD. Optimisation of osmotic dehydration process of guavas by response surface methodology and desirability function. Int J Food Sci Technol. 2012; 47(1): 132–140. doi:10.1111/j.1365-2621.2011.02818.x

Luchese CL, Gurak PD, Marczak LDF, et al. Osmotic dehydration of physalis (Physalis peruviana L.): Evaluation of water loss and sucrose incorporation and the quantification of carotenoids. LWT. 2015; 63(2): 1128–1136. doi:10.1016/j.lwt.2015.04.060

Ganachari A, Thangavel K, Nidoni U, et al. Optimisation of osmotic dehydration process for aonla (Emblica officinalis) fruit in the mixture of salt-sugar solution. J Pharmacogn Phytochem. 2020; 9(4): 772–775. doi: 10.22271 / phyto.2020.v9.i4k.11794

Canuto GAB, Xavier AAO, Neves LC, et al. Physical and chemical characterization of fruit pulps from Amazonia and their correlation to free radical scavenger activity. Rev Bras Frutic. 2010; 32(4): 1196–1205. doi:10.1590 / S0100-29452010005000122

Teixeira TR, Oliveira AN, Ramos AM. Efeitos da temperatura e concentração nas propriedades físicas da polpa de araçá-boi [in portuguese]. Boletim do Centro de Pesquisa de Processamento de Alimentos. 2013; 31(2): 1–10. doi:10.5380/cep.v31i2.34957

de Souza RS, Sousa S, Loss RA, et al. Avaliação físico-química do fruto araçá-boi (Eugenia stipitata MacVaugh) cultivado na mesorregião do sudoeste Mato-grossense [in portuguese]. Revista Destaques Acadêmicos, 2018; 10(3): 1–13. doi: 10.22410/issn.2176-3070.v10i3a2018.1948

Maldonado RR, Pedreira AJRM, Cristianini LB, et al. Application of soluble fibres in the osmotic dehydration of pineapples and reuse of effluent in a beverage fermented by water kefir. LWT. 2020; 132: 109819. doi:10.1016/j.lwt.2020.109819

Sulistyawati I, Verkerk R, Fogliano V, et al. Modelling the kinetics of osmotic dehydration of mango: Optimizing process conditions and pre-treatment for health aspects. J Food Eng. 2020; 280: 109985. doi:10.1016/j.jfoodeng.2020.109985

Soares EC. Caracterização de aditivos para secagem de araça-boi (Eugenia stipitata Mc Vaugh) em leito de espuma [in portuguese]. Dissertation. Universidade Federal do Sudoeste da Bahia, 2013.

Azoubel PM, Murr FEX. Optimisation of osmotic dehydration of cashew Apple (Anacardiumoccidentale L.) in sugar solutions. Food Sci Technol Int. 2003; 9(6): 427–433. doi: 10.1177/1082013203040908

Madureira IA, Figueirêdo RMF, Queiroz AJM, et al. Drying kinetics of cactus pear pulp. Revista Brasileira de Produtos Agroindustriais. 2011; 13: 345–354. Available from: http://www.deag.ufcg.edu.br/rbpa/rev13e/Art13E3.pdf

Marques LF, Duarte MEM, Cavalcanti Mata MERM, et al. Drying preceded of osmotic dehydration of cashew’s pseudofruit: comparison being the mathematical models applied. Revista Brasileira de Produtos Agroindustriais. 2007; 9(2): 161–170. Available from: http://deag.ufcg.edu.br/rbpa/rev92/Art928.pdf




DOI: https://doi.org/10.37591/rrjofst.v10i2.3046

Refbacks

  • There are currently no refbacks.